Nonstationary spectral peak estimation based on Monte Carlo Filter
Norikazu IKOMA

Department of Computer Engineering, Faculty of Engineering, Kyushu Institute of Technology
1-1 Sensui-cho, Tobata-ku, Kita-Kyushu, Fukuoka 804-8550, JAPAN

Phone: +81-93-884-3216

FAX: +81-93-871-5835

E-mail:ikoma@comp . kyutech.ac. jp

Abstract A new method to estimate nonstationary power spectrum that has multiple peaks is pro-
posed. In the method, peaks of power spectrum are varying with time. Smoothness priors are assumed
to frequency and bandwidth of the peaks in system model. State vector consists of the frequencies and
the bandwidths. Observation model is time-varying coefficient AR model in which the coefficients are
nonlinearly parametrized by the state vector. A nonlinear state space representation is formed by the
system model and the observation model. As a method to estimate the state of the nonlinear model,
Monte Carlo filter proposed by G.Kitagawa is used. Simulational experiments to evaluate the estimation
precision of peak frequencies compared with the ordinary model are reported.
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1. Introduction

A method to estimate multiple peaks of
a nonstationary power spectrum using Time-
Varying Peak frequencies of Power spectrum
(TVPP) model is reported. TVPP model has an
advantage that can estimate frequency of spec-
tral peaks directly due to its nonlinear formu-
lation based on characteristic roots. However,
the conventional research [2] on the model has a
significant limitation with respect to the number
of peaks, caused by computational complexity of
non-Gaussian state esimation method based on
numerical approximation [3].

In this paper, the limitation of the number
of peaks is lessened with the aid of Monte Carlo
Filter(MCF) proposed by G.Kitagawa[4]. The
key idea of MCF is an approximation of non-
(Gaussian distribution by its realizations. Then
we can make a reduction of computational com-
plexity from the order of exponential with re-
spect to the number of peaks, which is a cost of
the numerical approximation method, to the or-
der of the number of realizations. The efficiency
of the model has been demonstrated in simula-
tional experiments, by comparing TVPP model
to the conventional model.

2. Model

Time-Varying Peak frequencies of Power
spectrum(TVPP) model is defined by a state
space representation [2]

Xt = Xt—1 + Wty (1)

Yyt = ar yite&t (2)

where ' denotes transpose. Eq.(1) is system
model which represents smoothness of state vec-
tor x;. The smoothness is governed by a sys-
tem noise vector w;. Observation model eq.(2)
forms time-varying coefficient AR model of or-
der p = 2m, where y; is observation, and ¢; is
observation noise that belongs to N(0,0?). y; is
a vector of past p observations

Yt = [yt—layt—% Tty yt—p] (3)

The p-dimensional vector a; = a(x;) con-
sists of time-varying AR coefficients nonlinearly
parametrized by the state vector x;.

ITtems of the state vector are

!
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where 8;; , 7 = 1,2,---,m are peak frequen-
cies and r;; , j = 1,2,-+-,m are peak band-
widths of power spectrum. Note that rﬁeileiyf,
7 =1,2,---,m are roots of characteristic equa-
tion
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where a; 4,a24,-++,a,; are items of vector ay.

Although it is difficult to obtain state vector x;
from AR coefficient vector a; since we have to
solve eigen value problem, the opposite calcula-
tion, obtaining time-varying AR coefficient vec-
tor a; from state vector xy, is easily executed.

3. Estimation

Nonlinear non-Gaussian state estimation
method should be used to estimate the state



theta(t)

Pl
M
S
) M
t
0 100 200 300

Figure 1: Estimated time-varying peak fre-
quency for 3-peaks-data by TVPP model.

vector because of the nonlinearity of the pro-
posed model. Numerical approximation [3] was
used in [2], however the method cannot be ap-
plied to high dimensional state vector. Then we
have employed Monte Carlo filter [4] instead of
numerical approximation [3].

Hyper parameters, variances of system noise
72 and 772, and variance observation noise o?
are estimated based on ABIC [1]. Practically,
several candidate values of these parameters are
tried and obtain ABIC value for all combina-
tion of the values, then we can decide the best
combination of the candidates. The order of the
model, denoted by p = 2m, is also determined

based on ABIC.

4. Simulation

Two experiments, 3-peaks-data and 4-peaks-
data, are demonstrated. Simulation data sets
are generated by TVPP model as the true
model. Then assume we know none of the true
model, the true parameter values, and the true
order. Under this assumption, TVPP model has
been applied. TVCAR model [5] is applied as an
ordinary model to the same data sets. Results
by TVPP model are shown in fig.1 and fig.2. Re-
sults by TVCAR model are shown in fig.3 and
fig.4. For each figure, solid lines show the true
peak frequency, and plots show the estimated
one. In TVCAR model, the plots are the results
of eigen value calculated by QR-decomposition
from estimated AR coefficients.
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Figure 2: Fstimated time-varying peak fre-
quency for 4-peaks-data by TVPP model.
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Figure 3: Estimated time-varying peak fre-
quency for 3-peaks-data by TVCAR model.
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Figure 4: FEstimated time-varying peak fre-
quency for 4-peaks-data by TVCAR model.
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