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Abstract

The aim of research is to estimate multiple peaks of power
spectrum that are varying with time. A model to estimate
the time-varying peaks has been proposed by the author. The
model is written in a state space representation composed
by a system model and an observation model. The system
model denotes smooth change of a state vector that consists
of pairs of peak frequency and bandwidth. The observation
model is autoregressive model with time-varying coefficients
that are nonlinearly parametrized by the state vector. The
nonlinear parametrization is based on a fact that the pairs of
frequency and bandwidth are roots of characteristic equation
of the autoregressive model. Fstimating the state vector by
giving the observations results the estimation of frequency
and bandwidth pairs of time-varying power spectrum. In
state estimation, properties of nonlinear and non-Gaussian
should be treated because of the nonlinear formulation of
the model. As a method of state estimation, we have em-
ployed an approzimation of non-Gaussian distribution by its
realizations, called Monte Carlo filter. Through numerical
examples, estimation precision of peak frequency has been
checked by comparing with a conventional model.

1. Introduction

Estimation of nonstationary spectrum from time series
data is one of the most important topic in the recent re-
searches of random signal analysis. It can be applied to
wide area of research and development fields, for exam-
ple, analysis of seismic wave data, vibration under non-
stationary conditions, acoustic signal processing, hu-
man voice analysis, speech recognition and so on. Also
there are so many techniques for nonstationary spectral
analysis by using, for example, covariance and spectral
window, or methods based on some specific definition of
nonstationary spectrum. Among the many techniques
of nonstationary spectrum estimation, there is one ef-
fective approach that uses time-varying AutoRegres-
sive(AR) coefficients. In this approach, nonstationary
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spectrum can be obtained by estimating time-varying
AR coefficients from the observation series.

Several models of this approach, using time-varying AR
coefficients, have been proposed. Locally stationary AR,
model [12] uses stationary models for each short inter-
val in which the data can be considered as stationary.
Based on the locally stationary AR model, an modifica-
tion employing smoothness between the adjoining inter-
vals is also proposed [13]. The smoothness used here is
accomplished by introducing a prior distribution in the
context of Bayesian approach [2], where weighted sum
of squares error of prediction, i.e., fitness to the data,
and smoothness represented by 1st or 2nd difference ap-
pear and trade-off parameter of these two factors is de-
termined by maximizing likelihood. Time-Varying Co-
efficient AutoRegressive(TVCAR) model [10] also as-
sumes smoothness of this approach to AR coefficient
for each time. In TVCAR model, time-smoothness of
spectrum is obtained through the assumption of smooth
changes of AR coefficients.

These conventional models can be written in linear
(GGaussian state space representation, so the state, which
represents time-varying AR coefficients, can be esti-
mated by using Kalman filter. However, the reason for
assuming a smoothness to the AR coefficient is rather
mathematical one than a motivation for developing an
effective model with deep consideration of the object
The underlying fact for this is that linear
Gaussian model is easy to handle. Recently, several

feature.

methods for nonlinear non-Gaussian filtering have been
researched. Difference among these methods is the ap-
proximation non-Gaussian distribution. Gaussian sum
approximation [3] is an early research. Numerical ap-
proximation of distribution [7], [8] uses numerical inte-
gration. The most recent one is an approximation by re-
alizations(particles) drawn from the non-Gaussian dis-
tribution. Some researchers of this approximation in-
dependently proposed such as bootstrap filter[4], condi-
tional density propagation(CONDENSATION) [6], and
Monte Carlo filter(MCF)[9].



Taking into account the recent researches of non-
Gaussian filter, the author has been proposed a model
for the purpose to estimate nonstationary power spec-
trum in which peaks are smoothly changing with time,
and has named it Time-Varying Peak frequencies of
Power spectrum (TVPP) model [5]. In state space rep-
resentation of TVPP model, state vector contains peak
parameters that consist of pairs of frequency and band-
width of spectral peaks. Advantages of TVPP model
compared with TVCAR model are 1) smoothness is as-
sumed to the spectral peaks directly, 2) peak parame-
ters can be estimated directly. Due to nonlinear factor
contained in TVPP model, there is a disadvantage of
computational cost since non-Gaussian nonlinear filter-
ing should be applied to the state estimation. Though
TVPP model has a disadvantage with respect to com-
putational cost for non-Gaussian filter, it is reasonable
to use when the direct formulation of peak parameters
is desirable.

As a method of non-Gaussian nonlinear filtering, we
have employed Monte Carlo filter(MCF) [9]. The key
idea of MCF is an approximation of non-Gaussian dis-
tribution, which appears in filtering procedure, by par-
ticles drawn from the distribution. Procedure of filter-
ing is written by procedures of each particle. Compared
with the numerical approximation method [7], [8], in
which computational cost is exponential order with re-
spect to the dimension of state vector, computational
cost of non-Gaussian filtering by MCF is lessen to the
order of number of particles. In the conventional re-
search [5], only two peaks has been reported due to a
limitation of the number of peaks caused by the expen-
sive cost of computation by the numerical approxima-
tion method. With the aid of MCF, we can apply much
more number of peaks to TVPP model in practice.

In this paper, we will show a method to estimate mul-
tiple peak of nonstationary spectrum by TVPP model
with MCF [9]. Since the computational cost of MCF
is less expensive than that of numerical approximation
method [7], [8], the limitation of number of peaks of
TVPP model is relaxed with the aid of MCF. We firstly
show a formulation of TVPP model based on a state
space representation. Secondly, general state space rep-
resentation and MCF as the state estimation method
are summarized. After these formulations, efficiency of
the model has been checked by a simulational experi-
ment. Comparison of TVPP model to TVCAR model
has been examined with respect to the values of AIC
[1] and mean squares error of the estimated peak fre-
quency. Finally, we will make some concluding remarks
based on the result of the simulational experiment.

2. Time-Varying Peak frequencies of
Power spectrum model

Time-Varying Peak frequencies of Power spec-
trum(TVPP) model [5] is defined by a nonlinear state
space representation

Xt =

X;_1 + Wy, (1)

Y = a(xy) y:+es (2)

where ' denotes transpose. Eq.(1) is called system
model which represents smoothness of state vector x;,
where the smoothness is governed by a system noise
vector w;. Eq.(2) is called observation model that
forms time-varying coefficient AR model of even order
p = 2m, where y; is observation, and ¢; is observation
noise of N(0,0?). y; is a vector of past p observations
such that y; = [ys—1,¥—2, -, yi—p] . & = a(xy) is p-
dimensional vector of time-varying AR coefficients that
is nonlinearly parametrized by the state vector x;.

Items of the state vector are as follows;

/
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where 0; ; are peak frequencies of power spectrum at
time ¢, and r;; are bandwidths of corresponding peak
for each 7 = 1,2,---, m. We obtain items of vector a;,
which are denoted by a1 4,a24,++,ap ¢, by

(1- rk_le_w"z)(l — rk_lew" z)
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By considering z as backward shift operator defined by
ZYs = Yi—1, the observation model (2) can be written
as

A(z;x1) yr = &4 (5)

Note that rj7teii91)f, j=1,2,--- m are roots of char-
acteristic equation A(z;x;) = 0. This means that the
model consists of a sequentially connected system of m
number of AR(2)’s, where the input of the system is
the observation noise ¢; and the output is y;. Conse-
quently, transfer function of the model is denoted by
inverse of eq.(4), 1/A(z;x:).

In each AR(2), complex conjugate roots are smoothly
varying with time as denoted in system model (1). Al-
though it is difficult to obtain state vector x; from
AR coefficient vector a; since we have to solve eigen
value problem, however, calculation of opposite direc-
tion shown in eq. (4) is easily executed.

Nonstationary power spectrum(instantaneous power
spectrum) of TVPP model can be obtained through



a natural generalization of power spectrum of station-
ary AR model into nonstationary AR model. Since
the transfer function of the model is inverse of eq.(4)
and the input signal &; has spectrum o2, nonstationary
power spectrum of TVPP model becomes

0.2

plw,t) = ———,
|A(e=i; ;) [

(6)
where w € [0, 7] is angular frequency.

3. State estimation by Monte Carlo filter

Most of time series models can be written in general
state space representation that consists of system equa-
tion and observation equation

g(xi—li wi)) (7)
h(xy,€4). (8)

In system equation (7), x; is a state vector(p-
dimension), w; is a system noise(/-dimension, [ < p)
with distribution ¢(w;7), where 7 is a vector of sys-
tem noise distribution parameters. g(-,-) is a function
RP xR — RP. In observation equation (8), y, is obser-
vation, €; is observation noise with distribution »(¢; o),
where o is a parameter of observation noise distribu-
tion. h(-,-) is a function R? x R — R, and we assume
€ = h_l(yt,xt) exisits. Note that, y; and ¢; are as-
sumed to be scalar in this paper, however, in general,
they are not necessary to be scalar.

Xt =

Y =

State estimation problem is to estimate the distribution
of state vector x; by giving observations, for each ¢ =
1,2,---, N. When the given observation set is Y;_; =
{y1,y2,--,y:—1} the state distribution is called one-
step-ahead prediction, and when Y; = {y1,y2, -, vz}
is given the state distribution is called filtering. They
are alternatively estimated in order of time index .

There are several conventional researches of state es-
timation problem for general state space representa-
tion, such as approximation of non-Gaussian distri-
bution by Gaussian-sum [3], numerical approximation
of distribution [7], [8], and approximation by realiza-
tions(particles) drawn from the non-Gaussian distribu-
tion. However, (Gaussian sum approximation method
remains a problem how to reduce the increasing num-
ber of Gaussian distributions. Numerical approxima-
tion method has a computational limitation since the
cost of calculation is exponential order of the grid num-
ber for numerical approximation. The third method,
which uses particles for the approximation, is currently
the most practical one among them since computational
cost is reasonable compared with the numerical approx-
imation method. In fact, computational cost of the par-
ticle approximation method is lessen to the order of the

number of particles. So we have employed the method
using particles. Several similar methods have been pro-
posed independently, such as bootstrap filter[4], condi-
tional density propagation(CONDENSATION) [6], and
Monte Carlo filter(MCF)[9]. We have employed the
MCF method among them.

The key idea of MCF is an approximation of non-
Gaussian distribution by its realization particles. Fil-
tering procedures can be done by using these particles
instead of distribution itself. Notation of particles for
one-step-ahead prediction is

{Pgt);Pg);' )pS\tJ)} Np(xtnft—l); (9)
and that for filtering is
{6769, 87} ~ p(alv2). (10)

By using these particles, estimation of prediction and
filtering distributions, which are represented by the cor-
responding particles, are obtained through the follow-
ing calculations

pi” =g W) (i
where {w(t) wgt), -~,w§|t4)} ~q(w;T) .
Calculate likelihood of each particle by
ol = plulp”) =7 (b~ (o)) . (12)

Resample as

p(lt) with probability a(lt)/ Zj‘il ag.t)
£ = : :
PS\? with probability ag‘?/ ZJM=1 ag.t)

(13)
By starting from realizations of p(xo|Yp), alternatively
applying (11) and (13) according to the order of ¢, the
approximated estimations of p(x;|Y;—1) and p(x:|¥:) for
allt=1,2,..-, N can be obtained.

After all estimates are calculated, likelthood of the
model to the given data set can be approximately ob-
tained by

1(V9) Zlogp yi|Yi—1)

Zlog Za()

where, ¥ = [o,7] is called "hyperparameter” [2] that
governs the performance of state estimation. The op-
timal value of hyperparameter, denoted by 19, is deter-
mined by minimizing the log-likelihood (14). Akaike

(14)

1R

— Nlog M,



Information Criterion(AIC) defined by [1];
AIC = —2I(9) + 2(# of free parameters) (15)

is used for order determination and model selection

4. Simulation

In order to evaluate the efficiency of TVPP model, a
simulational experiment by using artificially generated
data sets has been done. In the experiment, compari-
son to TVCAR model with respect to AIC and mean
squares error of peak frequency has been shown.

4.1 Data

Two data sets, ”3-peaks-data” and ”4-peaks-data” are
generated by simulation. In the simulation, a model
based on TVPP model is used as the true model. In the
true model, frequencies and bandwidths of power spec-
trum are denoted by 7, and rj, respectively. Some
peaks have time-varying }frequencif with constant incre-
ment, and other peaks have time constant frequency.
Bandwidths for all peaks are time invariant. The con-
ditions of the simulation for each data set are as follows;

3-peaks-data
rii=r, =15, =1/12,
07 ; = 0.314 4 0.004¢,
03, = 1571, 03, = 2.356

4-peaks-data
ri.=1/11,r5, =rj, =ri,=1/12,
07, = 0.314 4+ 0.004¢, 03, = 1.571,
03, = 2.094 + 0.002¢, 03, =2.827

These conditions are assumed to be unknown in the
estimation step, and the purpose of this experiment is
to estimate the changes of these variables. The number
of peaks for each data set is also unknown and is to
be determined in the experiment. Observation noise is
N(0,0?%) with ¢ = 1.0 in the simulation step, and we
assume 1t is known in the estimation step.

4.2 Estimation

Conditions of MCF for state estimation of TVPP model
are explained here in detail. Firstly, number of parti-
cles is set to M = 1000. This is due to the rule of
thumb shown in [9] for the estimation of average of
state distribution. There is another factor to be set
that is locally stationarity factor. This factor is defined

by the rate of prediction with respect to time index
t. Theoretically, it is 1, i.e., one-step-ahead prediction
and filtering are alternatively done. It can be changed
depending on practical reason, and we have set it to 2
in this experiment.

Frequency and bandwidth are in state vector, and their
feasible region are [0, 7] and (0, 1], respectively. Restric-
tions are required at the calculation of one-step-ahead
prediction eq.(11) not to be out of range. Although
several implementations of the restrictions can be con-
sidered, we have employed one of the simplest way that
use the correction of these values when they are out of
range. Furthermore, due to practical reason to detect
the peak of power spectrum, we have used [r., 1] as the
region for bandwidth with r, = 0.5.

Pre-filtering is done to obtain the appropriate initial
distribution from the information of leading part of
the series. It starts from non-informative distribution
p(x0|Yp) given by taking peak frequencies at regular
interval

Or0 = 7k/(m + 1), k=1,--- m. (16)

and bandwidths constant value rj o = ro. For the pur-
pose to estimate ”peaks” of power spectrum, the value
rg should be large enough to be identified as ”peak”,
and we have employed 7o = 0.8 in this experiment. We
have used ¢t < 20 of series as the leading part. After
finishing the pre-filtering, then going back to the head
of the series, we do the filtering procedure starting from
the distribution obtained by the pre-filtering.

We have used Gaussian distribution for the system
noise ¢(w; 1) with diagonal covariance matrix. By as-
suming the same variance for all peaks independently
to frequency and bandwidth, the diagonal part 72
can be identified by two variance parameters 77 for
frequency and 72 for bandwidth. Number of peaks,
m = {1,2,3,4,5}, are independently examined for each
data set. For the estimation of these hyperparameters,
we have used grid search method with combinations of
candidate values

72 = {0.2,0.1,0.09,0.08,0.07,0.06,
0.05,0.04,0.03,0.02,0.01},
72 = {0.1,0.01,0.005,0.001,0.0005,0.0001} .

Leading 40 observations are excluded from the calcula-
tion of log-likelihood (14) to avoid unexpected effect of
initial value. According to the value of log-likelihood,
the optimal combination of hyperparameters has been
determined. From the maximum log-likelihood ob-
tained by the determined hyperparameters, the values
of AIC are obtained for all m as shown in table 1. The
AIC values of optimal number of peaks determined by
minimum AIC method is underlined in the table.



For the optimal number of peaks, estimated median
of peak frequencies have been plotted in figure 1 for
3-peaks-data and figure 2 for 4-peaks-data. In these
figures, the true frequencies are denoted by solid lines
together with the estimated peaks in each figures.

4.3 Comparison to TVCAR model

For a comparison of the performance of TVPP model,
TVCAR model is applied to the same data sets. In
TVCAR model, smoothness is assumed to the AR co-
efficients by taking a state vector

Xy = a;. (17)

System noise vector w; is normal distribution with di-
agonal covariance matrix of same variance 72 for all
items.

For the order of TVCAR model, p = 1,---,10 are
independently applied. For each AR order, 72 =
{107%|¢ = 1,---,9} have been examined to search the
optimal value of hyperparameter 72. Where, leading 40
observations are excluded from the calculation of log-
likelihood to accomplish the same condition to TVPP
model. Pre-filtering for the leading part of series has
also done with initial condition that all coefficients are

0.

The hyperparameter 7° is estimated based on log-
likelihood for each order, and AIC values obtained from
them are shown in table 2. According to the minimum
value of AIC, the optimal AR order has been deter-
mined for each data set. By looking the table, the cor-
rect order is not always selected for each data set. We
have shown the minimum AIC by 1, the true order by
underline, in the table.

Peak frequency of TVCAR model is calculated from the
estimated AR coefficient by using double-QR method,
and they have been plotted in figures 3 and 4 for 3-
peaks-data and 4-peaks-data respectively. In these fig-
ures, the true frequencies are denoted by solid lines.

Looking both AIC results by TVPP model and TVCAR
model shown in tables 1 and 2, we can see that the
TVPP model are superior to TVCAR model for all data
sets. As the other criterion, Mean Squares Error(MSE)
of peak frequency of power spectrum are calculated by

1 5 « 17
MSE = m Z Z [gk,t - ek}t] (18)

t=41 k=1

2

where, ék}t is estimated value of peak frequency, and
05 , is the true value of peak frequency. The values of
MSE are shown in table 3. By looking the table, TVPP
model is also better than TVCAR model for all data
sets.

Table 1: AIC of TVPP model

data set
m 3-peaks-data 4-peaks-data
1 892.24 1123.74
2 854.22 945.94
3 829.56 884.16
4 840.59 840.89
5 843.84 854.86

Table 2: AIC of TVCAR model

data set
p 3-peaks-data  4-peaks-data
1 1079.72 1125.53
2 887.30 1043.89
3 880.36 1032.91
4 856.90 943.61
5 864.71 943.51
6 853.43 948.32
7 858.26 949.67
8 863.68 1948.34
9 872.42 950.73
10 878.34 954.54
Table 3: Mean squares error of estimated
peak[rad?]
model data set
3-peaks-data 4-peaks-data
TVPP 0.6162 x 10~*  0.8006 x 10~
TVCAR 0.1656 x 10~'  10.3364 x 10~*

5. Conclusion

We have proposed a method to estimate multiple peaks
of power spectrum varying with time by Time-Varying
Peak frequencies of Power spectrum (TVPP) model
[6]. The model can be written in nonlinear state space
representation in which the state vector consists of
pairs of peak frequency and bandwidth of nonstation-
ary power spectrum. The state can be estimated by
nonlinear non-Gaussian filtering method. As the fil-
tering method, we have employed an approximation
by realization particles of the non-Gaussian distribu-
tion called Monte Carlo Filter (MCF) [9]. By applying
MCF to TVPP model, a more number of peaks than



that in conventional research [5] can be estimated. In
a simulational experiment, the cases of 3 and 4 peaks
have been examined. Comparison to Time-Varying Co-
efficient AutoRegressive(TVCAR) model [10] has been
done. We have obtained the result that TVPP model
is superior to TVCAR model with respect to AIC and
mean squares error of peak frequency. For further work,
comparison to the other conventional methods such as
Wigner distribution [11] can be considered.
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Figure 1: Estimated peak frequencies by TVPP
model(median) for 3-peaks-data
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Figure 2: Estimated peak frequencies by TVPP
model(median) for 4-peaks-data
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Figure 3: Estimated peak frequencies by TVCAR
model for 3-peaks-data
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Figure 4: Estimated peak frequencies by TVCAR
model for 4-peaks-data



