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Abstract

The aim 1s to track a maneuvering target with abrupt
change of its state(acceleration). The target is mod-
eled by general state space representation that consists
of system model for the target dynamics and observa-
tion model for the radar observation process with non-
hnear formula. Using heavy-tailed distribution such
as Cauchy distribution instead of Gaussian distribu-
tion for the system noise, tracking performance is tm-
proved. Particle filter s used for state estimation of
such nonlinear non-Gaussian model. A simulational
ezperiment shows the improvement by our method com-
pared with the Gaussian model using extended Kalman

filter.
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1 Introduction

The aim of this research is to track a maneuver-
ing target such as ship, aircraft, and so on. The
target is modeled by general state space representa-
tion, which consists of system model and observation
model, and particle filter is used for estimation of the
state. Dynamics of the target is described by system
model with state vector in Cartesian coordinate. We
assume to use a radar to detect the target position, so
range and bearing(angle) to the target are observed.
This measurement process i1s formulated by observa-
tion model in polar coordinate with independent mea-
surement noises for each observation variable. Due to
the difference of coordinate systems between state and
observation, the observation model must be a nonlin-
ear system. Consequently, we have to use some non-
linear method for the state estimation, e.g. extended
Kalman filter, or some other kind of nonlinear filter.

There is a problem in tracking of maneuvering tar-
get that the target might have abrupt change of its
state(acceleration) by sudden operation of accelera-
tion pedal, break, or steering. In the conventional re-
searches, Gaussian noise is used both for observation

and system noises. The use of Gaussian system noise
causes blunt estimation to such abrupt changes of the
state. To overcome this problem, we propose a use of
uni-modal heavy-tailed non-Gaussian distribution for
system noise, in this paper. As the heavy-tailed dis-
tribution, Cauchy distribution is typical. This is in-
terpreted that usual(continuous) movement is denoted
by around the uni-mode and the abrupt change of the
target is represented by the heavy-tail with low prob-
ability, which is relatively higher than Gaussian one.

A special care should be taken in dealing with a
state estimation of this kind of non-Gaussian nonlin-
ear model, because the distribution of the state can
be multi-modal. Since the use of extended Kalman fil-
ter means an approximation of the multi-modal distri-
bution by Gaussian uni-modal distribution, it causes
a problem that uni-mode of Gaussian approximation
might be placed at low probability area between modes
of multi-modal distribution. Consequently, we have to
use more exact approximation of non-Gaussian distri-
bution in the state estimation, such as [2],[5], and [7].
Sequential Monte Carlo method[7] is computationally
effective among them. This kind of technique is also
called particle filter method, e.g., [3],[4], and [6].

In the following sections, we firstly define the model
for maneuvering target tracking. Continuous time
model is defined and discrete time model is derived
from the continuous one. Heavy-tailed distribution
is introduced into the discrete time model. Secondly
we will explain the state estimation method by using
particle filter. Finally, the efficiency of the method is
shown through a simulational experiment of maneu-
vering target. The result is compared to the Gaussian
model with extended Kalman filter.

2 Model

Dynamics of maneuvering target is described by
continuous model firstly. By discretizing the continu-
ous model, we obtain a discrete time model. For the
discrete time model, we will introduce a heavy-tailed
non-Gaussian distribution as the system noise.



2.1 Continuos time model

Let the dynamics of the target be written in differ-
ential equation

xt) = F x(t) + G u(),
where ¢t € R shows continuous time index,

x(t) = [ra (1), 7y (1), 5(1), 59 (1), aa(t), ay (D] (2)

is a state vector consists of position r(t) = [r(t), ry 7",

(1)

velocity s(t) = [s5(1), sy (t)]T, and acceleration a(t) =
lax(t),ay (t)]T vectors (x? shows transpose of x). F is
a state transition matrix

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
F= 0 0 0 0 0 1 ’ (3)
0 0 0 0 —o 0
0 0 0 0 0 —o

G is a matrix for addition of system noise

o - OO o0 o O
- o O O o o

and

u(t) = [us(t),uy (1)

is the system noise vector.

The system model eq.(1) is interpreted as follows;
change of the target position is determined by velocity,
change of the velocity is determined by acceleration,
and the acceleration is driven by the input u(¢). As the
input u(t), it is proposed by [8] to use Gaussian white
noise since the change of acceleration is unknown.

(5)

2.2 Discretization
Solution of differential equation (1) is
¢
x(1) = A(t — to)x(to) +/ A(t - 7)Gw(r)dr, (6)
to

where

_ F 1 1
A{t)=et' =T+ Ft+ 5F2t2+ i1?5‘*1t5”+-.. (7)
Let At is sampling time of discretization, and we will
use discrete time points ¢t = g+ kAt for £ =0,1,2,---
in the following discussion. For these time points, we

have
x(tkr1) = A(A)x(tr)

-|-/t ™ A(tp41 — 7)Gw(T)dT. (8)

By assuming zero-th order hold to system noise, i.e.,
wy, = w(iy), we have the discretized formula

Xp41 = A(At)xk + B(At)wk (9)

where
t

/ A(r)Gdr
0
= Gt+ 5FGt? + $F2Gt3 + .-+

B(?)

(10)

2.3 Discrete time model

By applying the discretization shown in the previ-
ous subsection to the continuous model (1), we have
the discretized model

A x4 + B Vi,

(11)

where
xi, = [re (), ry (), 50 (k), 5y (k), az(k), ay ()]

is state vector,

(12)

1 0 At 0 a1 0
0 1 0 At 0 a1
0 0 1 0 as 0
A= 0 0 0 1 0 as (13)
0 0 0 0 e 0
I 0 0 Tant
is state transition matrix,
[ b 0
0 b
b 0
B= 0 b (14)
bs 0
0 b

is a matrix for addition of system noise, and
T
Vi = [va (), vy (R)] (15)

is system noise vector. The items of eq. (13) and (14)
are as follows;

b - 1<ﬁ_al),
o 2

a1:b2 =

(16)

(17)

— e @A) (18)

as = b3 =
As a result of discretization of Gaussian white system
noise u(?) in continuous time model, we have system
noise vector

2
kaN(O:Q)) Q:[Tg 02]

Ty

(19)

As shown above, it becomes Gaussian white and inde-
pendent in each element.



2.4 Observation model

Measurement process by radar of the target posi-
tion is denoted by observation model

ye = h(xx) + wy, (20)
where
v = [ya(k), v, (k)] (21)

is observation vector consists of bearing ys(k) and

range y,(k),
an-1 rz(k)
t {ry(m}
h(Xk) = (22)
ro(k)” + 1y (k)®

denotes nonlinear measurement process by radar char-
acteristic, and

wi. = [wg (k), wy (k)] (23)

1s observation noise vector with its distribution

2
[ wy (k) ] ~N(O,R), R= [ ‘Bﬂ 002 ] (24)
g

Note that it is possible to use transformation on ob-
servation series from polar coordinate to Cartesian co-
ordinate. However, then, we have to use non-Gaussian
distribution for the observation noise caused by the
translation. Due to the direct formulation of mea-
surement process by nonlinear equation (22), we can
use simple distribution (24). So it is rather straight-
forward to use the above defined nonlinear model than
using transformation on observation series.

2.5 Heavy-tailed system noise

For the aim to tracking the maneuvering target
with abrupt change of its acceleration, we use heavy-
tailed non-Gaussian distribution instead of Gaussian
one for system noise eq.(19) as follows;

Q=% %] (25)

Vi ~ C’(O,Qc), qy

where, C denotes heavy-tailed distribution with cen-
tral position 0 and dispersion Q.. Cauchy distribution
is typical as the heavy-tailed distribution, as shown
in Figure 1. We will explain more in scalar case for
convenience. Probability density function Cauchy dis-
tribution is given by
q

pe(v;9) = (12 + ¢2)’
where central position is 0 and dispersion is controlled
by ¢. It has relatively high probability for large |v]
values compared with Gaussian distribution.

(26)

Figure 1. Probability density function of
Cauchy distribution(solid line) and Gauss
distribution(dashed line)

3 Particle filter

For state estimation of non-Gaussian nonlinear model
as described above, non-Gaussian nonlinear filtering
method is required. The key of the filtering method
is how to approximate the non-Gaussian distribution
of the state. There are some conventional researches,
e.g., Gaussian sum approximation [2], numerical rep-
resentation of non-Gaussian distribution [5], and ap-
proximation by particle called Sequential Monte Carlo
method[7].

The use of particles to approximate non-Gaussian
distribution has computational advantage compared
with other approximation. Gaussian-sum approxima-
tion [2] has combinatorial problem in the computa-
tion, and numerical approximation of distribution [5]
has exponential order of computation. Contrary to
them, approximation by particles has computational
cost of the order of the number of particles.

There are several methods in SMC, such as boot-
strap filter[3], conditional density propagation (CON-
DENSATION) [4], and Monte Carlo filter [6]. We have
employed Monte Carlo filter (MCF) among them, and
will be is explained in the following section.

3.1 General state space representation

MCF can estimate the state for general class of
state space model[6]. We use a definition of general
state space representation, which is a subset of the
class, and is defined as follows;

vi ~q(-;Q) (27)

wi ~7r(-;R) (28)

Xp = g(Xk-1,Vr),

yr = h(xg, wi),



where g(x,v) and h(x,w) are nonlinear functions,
and ¢( - ;Q) and r( - ;R) are non-Gaussian distri-
butions. The target tracking model defined at the
previous section is a special case of this representa-
tion.

Let the observation series is denoted by

YN:{ylija"')yN} (29)

The problem of state estimation is divided into three
types of sub-problems depending on the time relation-
ship between the state and the observations. They
are called prediction, filtering, and smoothing, in gen-
eral. Let us fix the problem to estimate the cur-
rent state xz, then the three sub-problems become the
estimation of the following probability density func-
tion(pdf)s; p(xx|Yz_1) is for one-step-ahead predic-
tion, p(xp|Y%) is for filtering, and p(xx|Yx4r) is for
smoothing with fixed lag L.

3.2 State approximation by particles

The key idea of MCF is an approximation of non-
Gaussian distribution by many number of its realiza-
tions. These realizations are called ”particles”. Fil-
tering procedures are done by using these particles
instead of distribution itself. Notation of particles are
as follows; for one-step-ahead prediction,

{pgk),pgk), P )} p(xk [Yi-1) (30)
filtering,
{f£k)’f2(k)’ . ’f](‘p} ~ p(x[V3), (31)

and smoothing(with lag L)

{S(lklk+L),Sgk|k+L)’ o ,SS\'}““'L)} ~ p(xp|Visr)- (32)

3.3 Filtering procedure

Following two procedures are are alternatively used.
One-step-ahead prediction:

(k) (f(k 1) (k)) (33)
where {vgk),vg ,~-~,v§‘§)} ~q(v;Q) .
Filtering:

Calculate likelihood of each particle by
o) = p(uelp™) = r (b7 (v, P R (34)

Resample according to

p(lk) with prob.

M
a(lk)/ Z agk)
j=1
£7=19 5 z (35)

M
k k
SOILI
j=1

pg\];) with prob.

Starting from particles of p(xg|Yp), alternatively ap-
plying (33) and (35) in the order of £ = 1,2,---, N,
particles of p(x|Yz_1) and p(xz|Y:) are obtained for
all k.

3.4 Smoothing

By augmenting the particle described as below, we
have smoothing estimation using the same algorithm
iterating the filtering and the one-step-ahead predic-
tion. The augmented particle consists of smoothing
particles(i.e. for the past times) and filtering/one-
step-ahead prediction particle(for the current time).
Assume that fixed lag smoothing with lag L is per-
formed, then, the i-th augmented particle for one-step-
ahead prediction is

p(o) =

_ak— _Llk— 36
{p(k) (b=1lE=1) ((e=2fp-1) | (bElk=1) (36)

and for filtering

ng) = {fi(k),Sgk—1|k)’sgk—2|k), (k L|Ic)} (37

Note that fi(k) can be rewritten by sgklk) according to
its definition.

By applying the same algorithm of one-step-ahead
prediction and filtering to particles of ng) and ng),
we obtain particles for the fixed lag(L) smoothing of
time k — L by extracting sl(»k_le) from eq.(37).

Remark that by theoretical point of view, the aug-
mented particles approximate the joint distribution

{ng)} ~ p(
{ng)} ~ p(

3.5 Likelihood

Xk-1|Y2), (38)

Xk)xk—l)"'

yXp-L|Ye-1). (39)

xk_7xk_1,...

Likelihood of the model to the given data set can
be approximately obtained by

N

> log p(yi[Yi1)

k=1

k
> log | 57 2
k=1 j=1

Where, 9 = {R, Q} is called "hyperparameter” that
governs the performance of state estimation. The op-

I(9) =
(40)

1R

timal value of hyperparameter, denoted by 19, is deter-
mined by maximizing the log-likelihood, eq.(40) [1].



4 Simulation

To show the improvement by our method, a sim-
ulational experiment has been done as follows. At
first, synthetic data have been generated to simulate
the maneuvering target(ship), similarly to [9] but we
use twice maneuver. They are shown in Figure 2
by Cartesian coordinate(upper) and polar one(lower).
The polar data are assumed to be actually observed
and used for state estimation. In these figures, solid
lines show the observation, and dashed lines show the
true trajectory. It can be seen that noise features are
different depending on the coordinate system.

Non-Gauss(Cauchy) model is applied to the data
by using particle filter(MCF) with the number of par-
ticles M = 100,000. Gauss model by using extended
Kalman filter(EKF) is also applied to the same data.
Variances of observation noise vector are assumed to
be known as 02 = 9x10~% and 05 =3x107%. Asadis-
tribution of initial state, we assume that the average of
position, velocity and acceleration are known and the
variance are small(assume 1.0 here for all element).
Hyperparameters are determined by maximizing the
log-likelihood for both models as shown in Table 1,
where underline shows the determined.

Estimation results of filtering of z-axis, %Xy, are
shown in Figure 3 for position, Figure 4 for velocity,
and Figure 5 for acceleration. In these figures, solid
lines show the estimation result, and dashed lines show
the true trajectory. The result of Gauss model(EKF)
is the mean value of marginal distribution since it is
Gaussian. There are several choice to show the re-
sult in case of non-Gauss model, here, the result of
Cauchy(MCF) is the mean value of marginal distri-
bution computed by averaging the particles for each
element.

By looking the results, when no maneuver, Cauchy
model has smooth trajectory but Gauss model has
been fluctuated. On the other hand, when maneu-
vered, both model track the true trajectory with cer-
tain delay. The performances on the maneuvered pe-
riod between two models are almost the same, exactly
saying Cauchy model is slightly better than Gauss
model. One may consider that the use of smaller vari-
ance 72 in Gauss model will have smoother one at the
no maneuver period, however, then it will only have
blunt estimation at the maneuvered period.

5 Conclusion

By using heavy-tailed distribution(Cauchy distri-
bution) instead of Gaussian distribution for the sys-
tem noise of state space model, the improvement of
tracking performance of a maneuvering target with
abrupt change of its state(acceleration) has been shown
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Figure 2. Trajectory and observation

Table 1. Log-likelihood

T2 log-likelihood
Cauchy(MCF) Gauss(EKF)
Te-3 402.25 530.76
le-4 470.36 588.59
le-5 514.91 566.87
le-6 539.25 65.84
le-7 554.74 -3473.44
le-8 246.48 -25113.5

through a simulational experiment by comparing with
the Gaussian model using extended Kalman filter. Ap-
plication to the real data is the future work.
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