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Abstract. Tracking problem of maneuvering target is treated with assump-
tion that the maneuver is unknown and its acceleration has abrupt changes
sometimes. To cope with unknown maneuver, Bayesian switching structure
model, which includes a set of possible models and switches among them,
is used. It can be formalized into general (nonlinear, non-Gaussian) state
space model where system model describes the target dynamics and observa-
tion model represents a process to observe the target position. Heavy-tailed
uni-modal distribution, e.g. Cauchy distribution, is used for the system noise
to accomplish good performance of tracking both for constant period and
abrupt changing time point of acceleration. Monte Carlo filter, which is a
kind of particle filter that approximates state distribution by many particles
in state space, is used for the state estimation of the model. A simulation
study shows the efficiency of the proposed model by comparing with Gaus-
sian case of Bayesian switching structure model.
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1 Introduction

Problem of target tracking has been investigated actively after Kalman filter
algorithm had been proposed, e.g.[Singer 1970]. Since the middle of 1980s,
solution to this problem have been applied to, e.g., beam pointing control
of a phased array radar, where benchmark problem is presented by [Blair
and Watson 1994]. In this application, interacting multiple model that in-
cludes constant velocity model, constant thrust model and constant speed
turn model is used with Kalman filter for state estimation [Blom and Bar-
Shalom 1988].

Recently, a state estimation methods for nonlinear non-Gaussian state
space model, which are called particle filter in general, are proposed: [Gordon
et al. 1993], [Kitagawa 1996], and [Isard and Blake 1998]. These particle fil-
ters use many number of particles in state space to approximate non-Gaussian
distribution of state estimate. Their ideas are considered as the special real-
ization of sequential Monte Carlo method[Liu and Chen 1998]. For nonlinear
or non-Gaussian model, particle filter can achieve more precise estimation of
the state than the one of Kalman filter since Kalman filter only approximates
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the state distribution by Gaussian(uni-modal) while the actual one might be
multi-modal.

The particle filters allows us to use nonlinear structure for the target track-
ing problem. Bayesian switching structure model that includes a set of pos-
sible models is applied to the problem and good performance is reported in
[McGinnity and Irwin 2001]. Bayesian switching is also related to self organiz-
ing model[Kitagawa 1998] that automatically tune the hyper-parameters of
the model by augmenting the state vector with hyper-parameters. This idea
is generalized to switching the model structure by adding indicator vector of
the model to the state vector [Higuchi 2001].

While simultaneous consideration of the multiple models is effective for
dealing with the target tracking problem, non-Gaussian distribution for de-
scribing the system noise is also worthy of being considered. A use of heavy-
tailed uni-modal distribution to follow abrupt changes of target’s accelera-
tion is proposed with particle filter[Ikoma et al. 2001]. A representative one
of such distribution is Cauchy distribution. By assuming Cauchy distribution
to the system noise, which corresponds to increments of acceleration, good
performance of tracking is accomplished both for constant period and abrupt
changing time point of acceleration.

In this paper, we propose the use both of Bayesian switching structure and
heavy-tailed uni-modal distribution simultaneously in a tracking problem. A
simulation study shows the efficiency of the proposed model by comparing
with Gaussian system noise case of Bayesian switching structure model.

2 Model

Basic model for target tracking is firstly introduced, where, acceleration is
assumed to be constant in continuous model, i.e., first derivative of the con-
stant assumed element is according to a uni-modal distribution of 0 mode.
The basic model is extended to Bayesian switching structure model that
includes a set of possible models(candidate models), e.g., constant velocity
model, constant acceleration model, and so on, with state vector that consists
of position, velocity, acceleration, and jerk (and higher derivatives if needed)
of the target.

To cope with the unknown maneuver, the state vector is extended to include
indicator variable to select one model among the possible models. Markov
switching is used to allow the indicator variable to evolve in the system
model. To follow abrupt change of acceleration, we assume heavy-tailed uni-
modal distribution for system noise. It will achieve good performance both
for constant acceleration period and abrupt changing time point due to the
heavy-tail property. The model is formalized as a nonlinear non-Gaussian
state space model with system model described above and observation model
that represents position observation process of the target.

2.1 Basic model
Position of the target in one-dimensional space is treated here, and is rep-
resented by 7(t) where t stands for continuous time index. Let acceleration
of the target, a(t), be a maneuver and it is assumed to be unknown. System
model, which describes dynamics of the target, can be written in stochastic
differential equation
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where s(t) is velocity of the target, and v,(t) is white Gaussian noise with 0
mean and variance 7,2.
By discretizing the continuous system model eq.(1) with sampling time T'

(i.e. sampling points becomes t = Ty + kT with discrete time index k), with
0-th order hold assumption to the system noise such that v,(ca) = v, (kT), and
by denoting ry = r(kT), sy = s(kT), ar = a(kT), we have a discrete time
system model
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Note that acceleration of eq.(2) is modeled by random walk, and effects of
the random walk model’s terms(a(t) and v,(t)) during the sampling time T
appear in transition matrix and the vector apearing in the second term of
right hand side in eq.(2).

From the state of the system, observation yi is target position corrupted
with observation noise wy,
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where wy, is assumed to be Gaussian white with 0 mean and variance o2.

2.2 Switching
Due to the assumption that maneuver of the target is unknown, acceleration
of the target, which is element of random walk in system model eq.(2), may be
0 for some time, may have some certain non-zero value for the another time,
and may have changes between these values. This causes model mismatching
to apply eq.(2) while acceleration constant period. To cope with this, we
prepare candidate models of different element of random walk, i.e., position,
velocity, acceleration, jerk(difference of acceleration) and so on, and switch
system model among them.

Candidate models are as follows. Firstly, position constant(random walk)
model is

T =Tp—1+ TU](:) (4)
where v,(cr) = v,.(kT) with white Gaussian system noise v,.(t) with 0 mean
and variance 7,2. Next, velocity constant(random walk) model is
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where v,(cs) = vs(kT) with white Gaussian system noise vs(t) with 0 mean
and variance 7,2. Finally, jerk constant(random walk) model is
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where, ¢, = ¢(kT) stands for jerk, and v,(cc) = v.(kT) with white Gaussian

system noise v, (t) with 0 mean and variance 7.2.

Among these candidate models( eq. (2), (4), (5), and (6) ), one is selected
and used as a system model. To denoted the selection, an indicator that speci-
fies the selected model is introduced into the state of the model. The indicator
is denoted by i, and its value is equal to the highest order of the element,
i.e., 1 means constant position, 2 velocity, 3 acceleration, and 4 jerk. It is
switched according to Markov process with transition matrix (which consists
of transition probability), for example(in case of four candidate models),

0.950 0.025 0.000 0.000

Pr{ix = ifix_1 = j} = | 0050 0950 0025 0.000 )
B=U%-1=J5= | 0000 0.025 0.950 0.050
0.000 0.000 0.025 0.950

where column correspond to the indicator value before transit, and row cor-
responds to the after.

2.3 Heavy-tailed system noise
Since the property of unknown maneuver, acceleration of the target may have

abrupt change. It is represented by system noise term v,(ca) in acceleration

constant model eq.(2). With Gaussian system noise, its variance must be
increased to follow this abrupt change, however, on the other hand, stability
for constant acceleration period will be lost. To satisfy both properties of
following and stability simultaneously, uni-modal heavy-tailed distribution is
employed for system noise. Where, uni-mode represents the small fluctuation
with high probability for stable period and heavy-tail bears abrupt change
with low probability. Cauchy distribution is typical for such distribution, and
we use it in simulation study.

3 Simulation study

One-dimensional trajectory shown in Fig.1(a) is used, which has small ob-

servation noise with N(0,0?), 02 = 107%. Acceleration of the trajectory is
shown in Fig.1(b). In all figure, horizontal axis shows discrete time index k.

By applying Bayesian switching structure model for Gaussian case(ordinary)
and Cauchy(our proposal), we have obtained the estimate of position, veloc-
ity, acceleration, and jerk. As for the condition of Monte Carlo filter, number
of particles is set to 50,000. system noise variances 7,2, 7,2, 7,2, and 7.2 are
determined by grid search for maximizing the likelihood of the data.

Acceleration result(median) for both model are shown in Fig.2 by solid line,
with actual one by dashed line. It can be seen that Cauchy estimates keeps
stable at constant acceleration period without loss of following property of
abrupt changing points.

Evolution of model indicator variable, which is involved in state vector
together, for both model are shown in Fig.3. Indicator value 1(or 1 and 2)
are majority for beginning part(i.e., constant position), 3 is major in the
middle of the series, 2 is major at the ending part(constant velocity). By
looking the result, the most appropriate model is majority almost all the
period of the series.
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Fig. 1. Trajectory of target, (a)position(observation and true) and (b)acceleration.
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Fig. 2. Acceleration result: median (a)Gaussian and (b)Cauchy.

4 Conclusion

By exploiting an advantage of particle filter that allows us to treat non-
linear and non-Gaussian time series model tractably, we propose the use
both of Bayesian switching structure(nonliner) and heavy-tailed uni-modal
distribution(non-Gaussian) simultaneously in a target tracking problem. A
simulation study that treats simple one-dimensional space tracking problem
shows the efficiency of the proposed model by comparing with Gaussian sys-
tem noise case of Bayesian switching structure model.

The model can easily be extended to multi-dimensional position with non-
linear observation equation by radar(polar coordinate). It will be an interest-
ing future work.
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