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Abstract. Causal estimation of multiple feature points trajecto-
ries by using a switching state space model is proposed. The state
vector of the model consists of the position of each feature point,
the velocity of each rigid object, and some indicator variables for
each feature point. There are two types of indicator variables: an
object indicator representing the association between the feature
point and rigid object, and an aperture indicator representing the
attribute of the point e.g. aperture or not. By estimating the state
vector using a Rao-Blackwellized particle filter, smooth trajecto-
ries of feature points, velocity of objects, object indicators, and
aperture indicators are obtained simultaneously. Performance on
a real image sequence is presented by comparing to a Kalman filter
being given true indicators.
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INTRODUCTION

The bottom-up approach to image processing is an attractive topic in the
field of computer vision. It uses 2D trajectories of feature points detected
and tracked locally in an image sequence, without specific knowledge about
the objects in the scene. A typical example of this approach is reconstruction
of 3D structure and motion from the 2D trajectories, called ” Structure from
Motion(SfM)” [10].

Although this general approach is attractive, there are several problems
with it. Firstly, correct detection of corners is a difficult task in a real scene
when based only on local features of the image. Thus incorrect feature points
such as edges of the object are unavoidable. Secondly, tracking of the feature
point might involve some difficulties due to the simple template matching



using the local feature. The most important one among them is the aper-
ture problem, i.e., incorrect feature points such as edges lead to a matching
ambiguity. Consequently, the resulting trajectories of feature points are not
necessarily as smooth as the actual motion of objects.

Some conventional approaches to mitigate these problems apply "filter-
ing” technique by using a state space model for tracking feature points.
Among them, [9] uses a heavy-tailed distribution instead of a Gaussian dis-
tribution for measurement noise in order to avoid the undesired effects of
feature points of aperture. The idea is to consider the aperture point as an
outlier, and perform robust estimation based on the property of heavy-tailed
distributions. However, the actual trajectory of a feature point of aperture
is often much worse than an outlier, i.e., the observation error distribution is
neither centered at the true position nor symmetric.

We approach these problems by using multiple feature points rather than
a single feature point. Then, based on the fact that all feature points on the
same rigid object share a common velocity, position estimation of aperture
points becomes possible. Here, we also use a large variance of observation
noise for aperture points. To perform estimation in this approach, we should
know two types of associations: (1) between feature points and rigid objects,
and (2) which points are of an aperture. However, these associations are
unknown.

To overcome this, we introduce a Bayesian switching structure into the
state space model. Then, we can estimate these associations simultaneously
with the position of feature points and the velocity of objects. The model
can be written as a jump Markov linear system where the transition matrix
of the system equation and the coefficients matrix of the observation noise
term depend on a part of the state vector. Although the model is highly non-
linear, a recent computer intensive estimation method called ”particle filter”,
or Sequential Monte Carlo, [6] [12] can be applied to state estimation in this
case [5]. A numerical variance reduction method called Rao-Blackwellization
[1] is also applied to make state estimation more precise than for the conven-
tional particle filter. As a novelty of this paper, we propose a sub-optimal
importance function for the particle filters.

For the first attempt to use particle filters to this problem, we introduce
several assumptions as follows: a known number of rigid objects are moving
in parallel with the image plane, without rotating. Velocity of each object
is almost constant over short periods and changes smoothly. The number of
feature points is fixed throughout the observations, i.e., there is no occlusion.
These assumptions are just introduced to illustrate a simple case of dynamic
image processing to evaluate the performance of particle filters, and we have
a plan to relax these assumptions in future researches. We will show an
example of real image analysis under this condition at the end of this paper.



PROBLEM STATEMENT

Let p be the fixed and known number of feature points in the image. The
j-th feature point at discrete time k (integer) is denoted by a row vector

Xk,j = [Xk,J ) Yk,j]7 .7 = 17' *t,D- (]-)

Let ¢ be the fixed and known number of objects in the scene. The velocity
of i-th object at time k is denoted by a row vector

Sg,i = I:Slf,z ’ Sl!cl,z] , 1=0,1,---,q, (2)

where sy,  is a null vector that corresponds to the case of background objects
in the image. More precisely, it is the velocity of an object for which the
relative velocity to the observer is always zero.

Dynamics of feature point is assumed to satisfy

Xk,j = Xk—1,j T Sk,1(5)> (3)

where I(j) € {0,1,---,q} denotes association of j-th feature point to object.
Observation of feature point in eq. (1) is denoted by

Yk, j = ["Ekyj ) yk,j]7 .]: 1;"'7]7- (4)

It depends on the physical observation process. Typically, it is obtained from
the true one x; ; with additive Gaussian observation noise wy, ;. However,
in aperture case, the noise could be more complex.

Suppose we can only observe yy ;; see eq. (4). Consequently, feature
points in eq. (1), velocity of objects in eq. (2), association between feature
points and objects I(j) in eq. (3) are unknown. It is also assumed that
we would not know which points are of aperture in the observation process
eq. (4). Then, the problem is to estimate these unknown variables from
the observation series causally (i.e. using up to current observation), thus
sequentially.

MODEL

To solve the problem stated in the previous section, we propose to use a
switching state space model.

We assume that the velocity of each object is almost constant over short
time periods. This can be represented by a random walk model with Gaussian
white noise vy ; ~ N(0,72) as

Sk,j = Sk—1,j + Vk,j- (5)

Let the state vector consists of the positions of all feature points and the
velocities of all objects,

Xk)T = [Xk,l y sy Xkyp s Sk, Sk,q] ) (6)



where xT denotes x transposed. The observation vector is defined as

YkT = [Yk,l PR Yk,p]- (7)

Then, we can formulate a state space model as a pair of system and
observation equations

{Xk = F(mg)xp_1 + Gvy,
vi = Hxy+ E(ag)wy,

®)

where vy, is a vector of system noise with element v ; in eq. (5), and wy
is a vector of observation noise in which each element of wy; is assumed
to be zero mean Gaussian white with variance 2. F(-) and G are matrices
properly defined to satisfy eq. (3) and (5), and matrix H is defined as identity
Yk,j to be xi ; plus corresponding noise term. The role of matrix E(-) is to
control the variance of observation noise depending on ay.

Actually, in eq. (8), F(-) and E(-) depend on the object indicator vector
my, and aperture indicator vector ay,

my = [mk,la T Jmk,P] sk = [ak,la Ty ak,p] ) (9)

where my ; € {0,1,---,¢} and a;; € {—1,0,1}. These dependencies define
the switching structure of the model. F(-) and E(-) are defined as follows.
For F(-), if my,; = 4, then I(j) = i is used in eq. (3). For E(-), if ax,; = 1,
then j-th feature point is considered as of aperture and a large variance of
observation noise is applied. aj,; = 0 corresponds to the ordinary feature
points so o2 is used, and aj; = —1 corresponds to the background feature
points so a small variance of observation noise is used.

If we knew the true value of indicator variables in eq. (9), then the state
space model, eq. (8), would be simply linear Gaussian, so the Kalman filter
could be successfully applied to perform state estimation. However we do
not know these values in our setting, so we have to estimate these variables
simultaneously with the state xj. To achieve this, indicator variables are
assumed to be Markov chains

Pr{mg,; = ilmg—1, =3} =p"; ;> (10)
Pr {ak,l = i|ak71,l =j}= paz’,j: (11)

with high probability for diagonal (i = j) elements. Then, we have a form of
jump Markov linear system by egs.(8) (9), (10), and (11).

A formal description of the model is as follows; Let 0y ; = [my,; , ak,;].
By augmenting the state vector x into

ZkT = [XkT > ok] ) Or = [‘9k,17 o '70’64’]’ (12)

we can formulate a nonlinear state space model as

Zy = f(zk,l,vk),
{Yk = h(z, wy). (13)



ESTIMATION

State estimation, more specifically, " filtering”, consists of obtaining the prob-
ability distribution p(zx|y1:x), where y1.x = {y1,--,¥r}- By obtaining this
distribution, we can calculate characteristic values of our interest, such as
mean, mode, median, etc. Thus, in the model eq. (13), we can obtain the
estimation of positions of feature points and velocities of objects, as well as
indicator variables of object and aperture.

To perform state estimation in this nonlinear state space model eq. (13),
we employ a computer intensive method called ”particle filter” , or sequential
Monte Carlo [6],[12]. For more detail than written here, see [7] for a good
survey of this field.

The key idea is to approximate the state distribution by a large number
(say M) of weighted random samples called particles

{A) el 1 1=1,-, 0} (14)

where zg) denotes I-th instance of particle (a realization in state space), and

w,(cl) denotes the corresponding weight (non-negative, assumed to be normal-
ized). The approximation of the state distribution is formally written as

p(dzk|y1:x) = pm(dzelyix) 25 o (dzg)w % (15)

where, d_o)(dz) denotes delta-mass, i.e. its integral on region Z is equal to 1
k

if z,(cl) € Z, 0 otherwise.

Then, filtering becomes a task to obtain weighted particles at time k
given weighted particles at time k — 1 and observation yy. It proceeds as fol-
lows. First, generate particles at time k according to an importance function

(2 |Z0:k—1,Y1:1) S
70~ m(zilzh_yie) =1, M. (16)

Second, the weight is calculated by modifying the corresponding weight at
k—1by

O] ®,0
a}g) < w® p(ye|zy )p(Z;,” 2;,” 1)

k—1 0, (1 ’
m(@0 |2 1y

(17)

where p(yr|zi) is the likelihood function that is defined by the observation
equation in eq. (13), and p(zx|zr—1) is the state transition density defined
by the system equation in eq. (13).

Next, resampling of particles zg) (l=1,---,M) from {Zg) l=1,---,M}is
performed if required (typically when the variance of weights is large). Here,
the probability that [-th particle is sampled is equal to w(l). If resampling

has been performed, then set w,(c) = 1/M. Otherwise, let z(l) = z(l) and



w,(cl) = (I),(cl) for I/ =1,---, M. Thus, we have obtained the weighted particles
at time k.

The idea of Rao-Blackwellization [1] is to use the conditional linear-
Gaussian property, i.e., given gz, the model (8) is linear Gaussian. Thus, xx
is estimated by Kalman filter given g.;. Then, a Rao-Blackwellized version of
the filtering procedure proceeds as follows; Eq.(16) is applied only for 6, and
we obtain él(cl) for [ =1,---, M. Then, for each particle 675{),9 = {5,(61),0((]{)19_1},
the Kalman filter is applied to obtain p(x|y1:; éél)k) and p(¥r|y1:k-1; é((]l)k)
In eq. (17), with replacing all z by 6, use p(yk|y1:k_1;0~(()lz)k) as the likeli-
hood(1st term of numerator), instead.

There are several choices of importance function. If we choose it as
p(2k|zr—1), i.e., prior(before observe y;) density of zj, then weight mod-
ification eq. (17) becomes simpler one. It is called bootstrap filter[8], or
Monte Carlo Filter[11]. However, the prior importance function often fails
except simple model cases, so we need to use clever importance function that
effectively use the information of current observation, yy.

Although the best way is to use the optimal importance function
7(0k|00:k—1,¥1:%) = P(Ok|00:k—1,¥1:x) in the sense of minimum variance of the
weights [5], however in our problem, the computation of it is not tractable
due to the huge number of combinations for the state 6. Instead of the
optimal one, we propose to use a sub-optimal importance function as follows.
Fortunately in this problem, the likelihood can be divided into each feature
point, so we can construct a sub-optimal importance function as

/4

T(Ok100:5—1,¥1:%) < [ P(¥#.516k.500:5—1, ¥1:6-1)POk 510k —1.5)-  (18)
j=1

EXAMPLE

A sequence of image (size 512x440 [pixels]), in which two objects(books) are
moving, is taken with 30 frames of about 0.1[sec] sampling time. The 1st
frame is shown in Fig.1 with feature points extracted by [2], denoted by
rectangles. These are manually selected feature points among all (more than
100) in order to illustrate the performance of the proposed method: 5 points
including one aperture for lower book (moving toward right), 5 points for
upper book (moving toward left), and 5 points for background. By tracking
the feature points in the subsequent images, we have obtained trajectories of
feature points shown in Fig.2 with dashed line.

Estimated trajectories by the proposed model are shown in Fig.2 with
solid line. Smooth trajectories are obtained for all points, including the aper-
ture one at the center of the lower book. Comparison with a Kalman filter
being given true indicators has been done and results are as follows; Fig.3
shows velocity of two moving objects, our method ("RBPF”) can estimate
results close to the Kalman filter ("KF”) despite indicator values being un-



Figure 1: Selected feature points on 1st image.
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Figure 2: Trajectories of feature points(with estimate).

known. Fig.4 shows representative results of position estimation of a feature
point (not of aperture) on the lower object. Close results to Kalman filter
(”KF”) are also obtained by our method ("RBPF”). Here, "KF:a” shows the
result without taking into account aperture points (i.e. not robust), and it is
far from both ”RBPF” and "KF” due to the influence of aperture points.

Table 1 shows the estimation result of object indicator vector, where
the most frequent value appeared in the particles is shown for each element.
First 5 columns are points on the lower object, subsequent 5 columns are on
the upper object, and the last 5 columns are on the background. Most of
results are correct, but, a few associations are wrong. Although no table is
presented here, results for aperture indicators are similar and better than for
object indicator.
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Figure 4: Estimated position of a feature point(y-axis).

CONCLUSION

A new approach to detect moving object labeling and aperture label by taking
state vector with these labels as well as feature points positions and objects’
velocities. Particle filter is used to estimate the state. A two-dimensional
simple experiment demonstrates how the method works.

For future researches, we are planning to deal with more realistic cases
such as including rotation, using 3-dimensional motion. In the latter case,
reconstruction of 3-dimensional information will be involved. There are few
researches about causal estimation to address this case, while there are several
conventional methods for non causal case, e.g.[4]. There is a paper dealing
with the causal estimation, [3], however this work treats only single object
case using an extended Kalman filter. So it is a challenging problem of



TABLE 1: ESTIMATED OBJECT INDICATOR

Mk,j

10
11
12
13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30

causal estimation and is also very interesting from both a methodological

and a practical points of view.
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