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Abstract

A new method to estimate nonstationary power spec-
trum with adaptive selection of autoregressive order is
proposed. Time-varying PARCOR (partial autocorrela-
tion coefficient) and AR (autoregressive) order are esti-
mated from time series data. The data are assumed to
be observations of vibration that contain abrupt change
of spectrum due to arrivals of different signal, structural
changes of vibrating object, etc. The model that con-
sists of an autoregressive model with time-varying PAR-
CORs and time-varying order is used. The time-varying
PARCORs are estimated by Monte Carlo filter, and the
time-varying order is estimated by genetic algorithm. An
application to analysis of seismic wave data is reported.
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1 Introduction

Autoregressive(AR) model is one of the most impor-
tant tool for spectral analysis of stationary time series
data. In case of nonstationary spectral analysis, covari-
ance nonstationary AR models such as time-varying co-
efficient AR model [7] has been investigated. In these
conventional researches of nonstationary spectral analy-
sis, it 1s usually assumed that the order of AR model is
constant through the data unless we know a priori infor-
mation about the structural change of data. However, in
general, many of time series data sets having nonstation-
ary spectrum can be considered to have abrupt change
of spectral structure.

For the example of such data sets, we can see an
observation of seismic wave. Seismic wave consists of
three signals. The first is background noise, the second
is P(primary)-wave, and the last is S(secondary)-wave.
The arrival of these signals with time delay should be
considered in the modeling of spectral analysis. The sec-
ond example is concerned with an observation of vibrat-
ing object. When a break of the object occurred, spectral
feature of the vibration will be changed due to the change
of degree of freedom. In the situations mentioned above,
i.e. abrupt change of data due to the arrival of different
signal, the structural change of vibrating object, etc, the

analysis of nonstationary spectrum with the assumption
of constant order is insufficient.

Motivated by this fact, we propose a new model to
have time-varying order of covariance nonstationary AR,
model with aid of genetic algorithm [3]. In this paper,
we firstly define the model after summarizing the proper-
ties of covariance nonstationary AR model and PARCOR
(partial autocorrelation coefficient). Secondly, an esti-
mation method for the model is shown. The estimation
method is based on non-Gaussian nonlinear state space
modeling and its state estimation, and that is called
Monte Carlo filter [5]. Time-varying PARCORs are es-
timated by Monte Carlo filter, and time-varying order
of AR model is estimated by genetic algorithm. As an
application of the method, an analysis of seismic wave
data has been reported.

2 Model

We firstly show the aim of analysis, and secondly prop-
erties of nonstationary AR model that are required for
the model definition are summarized. After that, we will
define a new model for the analysis.

2.1 The aim of analysis

Given a set of time series data denoted by

Yv = {y(1),y(2), -, y(N)} (1)

where ensemble mean of data, E{y(¢)} (E{-} denotes
expectation), is assumed to be constant in time. We can
make the ensemble mean be equal to zero without loss
of generality. The nonstationary properties of the data
are represented by time-varying autocovariance function
denoted by

Ci(k) = Cov{y(t),y(t+k)} = E{y()y(t +k)}.

Since the Fourier transform of autocovariance function
is the power spectrum in stationary case, it is natural
to assume in nonstationary case that Fourier transform
of time-varying autocovariance function for each time is
defined as time-varying power spectrum p(w,t), where w
denotes angular frequency in [0, 7].



The aim of analysis is to estimate the time-varying
power spectrum from the data. Here, we also assume
time-varying power spectra have not only time-varying
properties represented by time-varying AR coefficients,
but also structural change that is governed by the change
of AR order. The time-varying AR order corresponds to
the change of degree of freedom of oscillation.

To define a model for this aim of analysis, we will
briefly summarize the properties of nonstationary AR
model and PARCOR, which are required for the model
definition, in the following subsections. After that, we
will define the model with time-varying AR order based
on the properties.

2.2 Covariance nonstationary AR-model

Covariance nonstationary AR model of order p is defined
as follows,

y(t) = Z:aﬁ-’(t)y(t —J) +ep(d), (2)

where ¢,(t) ~ N(0,0,),1.i.d, and af(2),a5(t),---,db(t)
are time-varying AR coefficients of order p.

Time-varying power spectrum of the model (2) is de-
rived as

plo,t) = Tl (3)
1= S0 af (t)eti

SAN

where w denotes angular frequency in [0, 7]. Thus, we
can obtain the time-varying power spectrum by estimat-
ing the time-varying AR coefficients from a set of time
series (1).

In the estimation of time-varying AR coefficients, no-
tice that the number of AR coefficients, N X p, is greater
than the number of data N. Then a simple application
of least squares method or maximum likelthood method
will fail, and some restriction among the coefficients are
required for the estimation.

In the conventional research, for example, time-varying

coefficient AR model [7] assumes the smoothness of AR
coefficients

Akag-’(t) =v;(t), v;(t) ~ N(0, Tp2),i.i.d (4)
where A denotes difference operator with respect to time
index ¢, such that Aa? (t) = a? (t)— a? (t—1), and k takes
value 1 or 2 in practice. In this formulation, the estima-
tion of time-varying AR coefficients is done by Kalman
filter algorithm, where (2) is observation equation and
(4) is system equation with state vector defined by time-
varying AR coefficients.

The optimal order of time-varying coefficient AR model,

P, is determined by minimizing AIC [1],

AIC = =2l(0) + 2(p+ 1), (5)
where {(+) is log-likelihood defined by

16) = 3" log p(wi[Yi1): (6)

t=1

@ is defined as a vector consists of hyper-parameters such
as 0'3, T‘,E, and so on. § denotes the value of § that max-
imize log-likelihood [2].

For the estimation of variance parameters in 6, the
use of augmented state vector, incorporated the origi-
nal state vector and the variance parameters, has been
proposed by [6].

2.3 PARCOR

There are relationships between AR coefficients of differ-
ent order p and p — 1 as follows,

afzaf_l_ag“z:;a (j:l,?,n-,p—l). (7)

The coefficients, al, a2, - - - ab are called PARCOR (par-
tial autocorrelation coefficient).

Variances also have the relationship
2
(712, :0‘3_1 {1—((15) } (8)

Thus, by knowing PARCOR and variance ¢2, we can
obtain all AR coefficients and variance for all orders,
1,2,---, P. When we change the AR order, we only need
to calculate AR coefficients from PARCOR, i.e. we have
no need to store AR coefficients of each order. Figure
1 shows the relationship mentioned here. PARCOR and
variance o2 are shown in box in the figure to emphasize
them as the essential factor. In the following section,
we use this property in model definition by making state

vector denoted by PARCOR and variance.

2.4 Model definition

We propose a new model by assuming the smoothness of

time-varying PARCOR,

Aab(t) = v,(t),  vp(t) ~ N(O, r2),iid.,

P = 1a2a"'1P
observation variance changes with time,
AGH(t) = ult),  ult) ~ N(O,#%),iid, (9)

and AR order p is varying with time as follows,

Ap(t) = v(t). (10)
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Figure 1: Relationship between PARCOR, AR co-

efficients, and variances

where v(t) is discrete random variable taking the value
as follows,

0 with prob. a,
v(t) =9 —p(t) ~ P—p(t) (11)
with prob. (1 —a«)/P.

Then, the proposed model can be written in state
space representation

Xt =
e =

by denoting the state vector, x;, and system noise vector,
v, as follows,

[a1(t),a3(2), -, ap(t), (1), plt
[1(8), va(t), - vp(t), u(t), v(t)]" (14)

Here, the nonlinear function A(-,

Xi_1+ Vi

12
h(x:,Yi-1) + € (12)

X; = ]T

V¢ =

1) is as follows,

p(t)
h(x¢, Y1) Z )y (15)

and AR coefficients in the above can be obtained from
PARCOR by (7). Hyper-parameter vector denoted by 6
consists of 72 | u? | and a.

The state vector, x;, takes fundamental role in the
estimation mentioned the following section. Elements of
the state vector are illustrated in Figure 2.

2 P 2
[t [a | [apoi ]| r |

Figure 2: Elements of state vector

3 Estimation

We propose to estimate the state by Monte Carlo filter [5]
for continuous variables such as PARCOR and variance,
by genetic algorithm [3] for discrete variable, the AR
order.

3.1 Monte Carlo filter

Since the proposed model contains nonlinear formula in
observation equation (2) with respect to the state x,
non-Gaussian nonlinear filtering is required for the state
estimation. As the filtering method, we use Monte Carlo
filter(MCF) [5]. It is summarized in the followings.

The key idea of MCF is an approximation of non-
Gaussian distribution on state vector by its sample par-

ticles as,
{p(t) , pgt), ) p(t)}
f(t) }

(0,40,

where, M denotes the number of particles.

p(x¢|Yi-1) (16)

By using these particles, filtering and one-step-ahead
prediction are done as follows. For the one-step-ahead
prediction, calculate the particles by

) = £ 4 0 (1)

(1) © vy, 1.e. the realized value of
random vector v; in equatlon (14).

where v, is a vector v,

Next, for the filtering, likelihood of each particle is
firstly calculated as follows,

ol = p(y.p{”). (19)
(t)

Since observation noise ¢; is Gaussian, o,

culated by Gaussian pdf of y; — h(pz(.t),Yt_l) with zero
mean and variance o2 (%)

can be cal-

Secondly for the filtering, resample the particles by
according to the probabilities

p(lt) with prob.

o/ Y a,
£ =4 (20)

pg‘? with prob. (t)/ 3 a,

where, Y o = ij " oz(t)
Log-likelihood of the model is approximately obtained
by

N
10) = > logp(yilVi-1)
t=1

1R

N M
Slog [ Y el | = Nlog . (21)
t=1 ji=1



Table 1: Relationship between GA and MCF

GA MCF
individual particle
mutation  one-step-ahead prediction
fitness likelihood
selection resampling

3.2 Genetic algorithm

By regarding the filtering and the one-step-ahead predic-
tion of MCF as the selection and the mutation operations
of genetic algorithm(GA)[3] respectively, the calculation
of MCF is equivalent to the process of GA except the
crossover operation. The relationship between MCF and
GA are shown in Table 3.2. The research [4] has been
shown this relationship, and proposed to incorporate the
genetic operation, such as crossover, to MCF calculation.
We use this idea into our model as follows.

The state vector shown in Figure 2 can be consid-
ered as ”gene” in the interpretation of genetic algorithm.
Among items of state vector x;, only the order p(¢) is a
discrete random variable, and all other items are con-
Since GA is intended to the optimization of
discrete variables, we incorporated GA operations to the
order p(t). Other items of state vector x; is calculated
by MCF. For the coding of p(t), several method, such
as binary code, Gray code, and 0 — 1 coding, can be
considered.

tinuous.

4 Data analysis

As an example of application of the proposed model, seis-
mic wave data shown in Figure 3 have been analized.
Arrivals of P-wave and S-wave can obviously seen in the
data. Variance of the data is also changing with time.

According to the proposed method, we have esti-
mated the time-varying AR order as shown in Figure
4. Also time-varying variance has been estimated and
shown in Figure 5. By looking Figure 4, the order in-
creases at the time where P-wave arrives, and also in-
creases more at S-wave arrives. The order is slowly de-
creasing as amplitude of S-wave going small. From Fig-
ure H, we can see that the estimated variance follows the
change of data variance.

Estimated result of power spectra varying with time
are shown in Figure 6. They are plotted from the esti-
mated AR coefficients and AR order both varying with
time. By looking the result, simple structure of power
spectrum (represented by low order) can be seen at back-
ground noise, and for P-wave and S-wave, more compli-

t
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Figure 4: Estimated AR order for seismic wave data
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Figure 5: Estimated variance for seismic wave data

cated spectra (represented by high order) are obtained.

5 Conclusion

A new method to analyze covariance nonstationary AR
process data has been proposed. In the method, a model
based on nonstationary AR model with time-varying AR
coefficients parametrized by PARCOR is proposed. AR
order is also varying with time. The model can be writ-
ten in state space representation with state vector that
consists of PARCOR, observation variance and AR or-
der. Estimation of the state is done by Monte Carlo fil-
tering for PARCOR and variance, by genetic algorithm
for AR order. An application of the proposed method to
the analysis of seismic wave data has been demonstrated.



Figure 6: Estimated power spectra for seismic wave
data
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