Adaptive Spectral Peak Estimation with aid of Genetic Algorithm
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ABSTRACT: An adaptive method to estimate time-varying peaks of power spectrum with aid of genetic algo-
rithm is proposed. The model used here is based on time-varying coefficient autoregressive model nonlinearly
parametrized by characteristic roots of complex conjugate pair. Since the characteristic root denotes a peak
frequency by its exponential part, the model can directly estimate time-varying spectral peaks by doing state
esitmation using non-Gaussian filtering. As the non-Gaussian filtering method, we employ Monte Carlo filtering
that uses particles sampled from the non-Gaussian distribution. It is known that the procedure of Monte Carlo
filter is similar to the procedure of genetic algorithm, and collaboration between them is possible. The model
used here also has time-varying order of autoregressive, we apply genetic operation for the estimation of it.
Simulational result shows the efficiency of the model.
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INTRODUCTION

Spectral analysis is widely used in many field of researches and designs. The analysis of stationary case is well
established, however, nonstationary anaylsis is still a topic to investigate. Several method to estimate nonstation-
ary spectrum by using time domain model have been researched e.g., time-varying coefficient autoregressive(AR)
model proposed by Kitagawa and Gersch(1985). Almost all the analysis used time domain model, the order of
autoregression is assumed to be constant though the time series data. However, it is not always satisfactory for
the anaylsis when the data contain some structural changes or arrivals of signal. For such situation, we propose
a new model that can treat the changes of autoregressive order within the time series data.

We firstly extend the time-varying coefficient autoregressive model to have time-varying order of autoregression,
and it is also assumed that the autoregressive coefficients are parametrized by the roots of characteristic equation
in order to make a direct estimation of peaks of power spectrum. Then we introduce a ”gene” to express the
choice of peaks from the state vector of the model and apply genetic operations to the gene to obtain optimal
selection of peaks and autoregressive order. Another parameters in state vector, such as parameters that specify
the spectral peaks, are estimated by a state estimation method for non-Gaussian model since our model is
nonlinearly formulated. As a method for non-Gaussian state estimation, we use Monte Carlo filtrer proposed by
Kitagawa(1997). The Monte Carlo filter has similar procedure to genetic algorithm except there is no crossover
operation. So a collaboration between Monte Carlo filter and genetic algorithm can easily be done.

In the followings, we firstly summarize the basic of time series model for the nonstationary spectral analysis
briefly, and next we define our model for the analysis in the situation mentioned above. Secondly, the method
for state estimation is explained. The procedure of Monte Carlo filtering is summarized and the use of genetic
algorithm in our model is mentioned here. Finally, a simple simulational experiment shows the efficiency of our
model to estimate nonstationary spectral peaks with changes of the number of peaks.
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Figure 1: Sequential system of AR(2) consists of selected peaks

MODEL
FOUNDATION

Let us consider time-varying coefficient autoregressive model of the follwing form,

2my

Yt = Zaj,tyt—j + €& (1)
j=1

where ¢; is i.i.d. random variable of normal distribution with zero mean and time-varying variance o2, We also
assume the order of autoregression denoted by m; is varying with time. By using z operator, which shifts time
as zyY: = Yi—1, the above model can be written as follows,
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Assume that all the roots of characteristic equation

2my

1-— Z aj,tzj =0 (3)
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are complex(conjugate pair) denoted by Fk,te:tig"”, k=1,2,---,my. The time-varying autoregressive model (1)

can be rewritten by using conjugate pair of characteristic roots as follows,

my

II (1 _ Fkyteié":'z) (1 _ Fk,te_ig"v’z) o (4)
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By considering equation (4) as data generation process in which white noise ¢; is fed into the process, it can be
written in sequential system of second order AR models as shown in Figure 1.

Note that by comparing equation (2) and (4), time-varying coefficients can be identified by characteristic roots,
and we use this fact for the definition of our model. This type of modeling is proposed by Ikoma(1996) except
the order of the model is varying with time.
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Figure 2: Selection of peaks by gene

COEFFICIENTS

For the explicit notation of autoregressive coefficients, we firstly denote characteristic roots by ¢; ;, j = 1,---, my,
as equation (4) becomes

2my
[[a-cnpm=e (5)
ji=1
where ¢; ;’s are defined
~ iék,i ..
¢t = { ik’te - Jj is odd, (6)

J 1s even,

for k =[(j + 1)/2], here [] is Gauss’s symbol. Then we can explicitly denote autoregressive coefficients

ap=(=1)" D e (7)
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where summation is taken i1, ---, 27, for all combination of each different value.

MODEL DEFINITION

Consider M conjugate pairs characteristic roots where twice of M is upper limit of autoregressive order. We
define a state space model with observation equation is basically defined by the equation (1) with equations
(6),(7), and system equation consists of linear part

Xy = X1+ Wy (8)
and nonlinear part

gt = f(gi—1,Wy,t) 9)



By noting the state vector
~T T

X = [Xt )gt]
system equation is written as following general form

x¢ = g (Xt—1,Wt) (11)
State vector of linear part consists of parameters of characteristic roots and variance,

- T

Xt = [r;‘rxgt)o-ﬂ (12)
and vector of system noise
]T

_ T T
W = [wr}ti Wy ¢y Wot

(13)

where []T denotes transpose of vector, and the followings are the definition of the vectors used above,

v =[rie, el (14)

0: = [91,t) e ',HM,t]T (15)

Wrt = [wr,l,t, T wr,M,t]T (16)
and

Wyt = [wo,l,t,"',we,M,t]T (17)

Althourh we have several choice of the distribution of system noise since we will use non-Gaussian state esimation
method, however for the practical reason, we assume Gaussian distribution for each items of system noise vector
with common variance in w, s, Wg ; and w, ;. The variance parameters are denoted by 7',.2, 7'6? and 7'3.

Nonlinear part of system equation has state vector g; of bit sequence with length A/,

gt = [gl,t,"';gM,t]T (18)

and we call g; ”gene” of genetic algorithm in Goldberg(1989). The function f(-,-) denotes the result of genetic
operations such as mutation and crossover. The gene works as that if k-th bit is equal to 1, the corresponding
pair of characteristic root denoted by rk,teiiek’* is used in observation equation, otherwise, i.e. another k’-th bit
is equal to 0, the corresponding pair is not used. This is illustrated in Figure 2.

The function of gene is written as the autoregressive notation as follows,
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Note that in observation equation defined by the equation (1), (6) and (7), in equation (6), only the characteristic
roots that have value 1 of corresponding bit of gene are used as c; ;.

ESTIMATION
MONTE CARLO FILTER

Since the model defined in the previous section is nonlinear, we have to use non-Gaussian filtering method for
the state estimation. As the state estimation method, we use Monte Carlo filter proposed by Kitagawa(1996),
and we will briefly summarize the method as follows.



Let us first denote the observation by
T

The aim of filtering is to estimate the conditional distribution of state vector given observation such as one-
step-ahead prediction distribution p(x:|Y;_1) and filtering distribution p(x:|Y;). In the Monte Carlo filter, these
non- Gaussian distributions are approximately represented by particles that are sampled from the distributions

as follows,
{P1,t, -, Pk} is sampled from p(x;|Y;_1) (21)
{f1+, ---, fx +} is sampled from p(x;|Y?) (22)

where each p; ; and f; ; takes a value of state vector x;. By starting from appropriate initial distribution p(xq|Yp)
and alternatively calculating the distributions of one-step-ahead prediction and filtering, we can estimate state
for all time ¢t = 1,---, N. The calculation of each distribution is as follows. One-step-ahead prediction is done
by simply applying each particle to system equation (11),

Pj,t = 8 (£ -1, wWj) (23)

by generating random vector w; ; according to the distribution of system noise w;. For filtering, firstly calculate
the likelihood of each particle by

@t = p(Y:|Pj,e) (24)

note that this can easily calculated by p.d.f. of Gaussian distribution from prediction error of y; and observation
variance 3. Then according to the value of likelihood «; ;, we can obtain the filtering particles by resampling
as follows,

p1:  with probability aq:/> «a

£ = : (25)
pk, with probability ag:/) «a
K
where Y a = Z a; ;. Log-likelihood of the model can be calculated from the result of filtering as follows,
j=1

N N K
1
I(v) = Zlogp(yth’}_l) ~ Zlog 7 Z a; 1 (26)
t=1 t=1 j=1

GENETIC OPERATION

There is a research of a similarity of Monte Carlo filter and genetic algorithm by Higuchi(1997). In this research,
particles appear in Monte Carlo filter are considered as individual jand one-step-ahead prediction corresponds
to mutation, filtering corresponds to selection. This relationships are summarized in Table 1.

Thus Monte Carlo filter is equivalent to a special case of genetic algorithm with zero crossover rate. The research
proposed to approach both from Monte Calro filter to genetic algorithm and vice versa. In our research, we
incorporated genetic operation into Monte Carlo filter by defining the state vector of our model as previously
defined. By this definition, the gene g; of state vector selects spectral peaks from linear part of state vector
denoted by %X;. In the above notation of Monte Carlo filter for our model, equation (23) contains equation
(9) is the genetic operation including mutation and crossover. Although several parameters such as mutation
and crossover rate for genetic operation, they can be determined by maximizing the likelihood function as in

Akaike(1980).



Table 1: Relationship between genetic algorithm and Monte Carlo filtering

genetic algorithm Monte Carlo filtering

population distribution
individual particle
mutation one-step-ahead prediction
crossover -
fitness likelihood
selection resampling
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Figure 3: Simulation data

SIMULATION

A simple simulational experiment has been done. We firstly generate an artificial time series by simulation with
time varying coefficient with three different order of autoregression. The length of data is 300 and they are
divided into three part corresponding to the three different autoregressive order, the first part has order 2, the
second order 4, and the last part has the order of 6. Thus the number of peak are 1,2; and 3 respectively. The
data are shown in Figure 3. The time changes of the frequency of the peaks are plotted in Figure 5. We assume
in this experiment that only the frequency changes, i.e., another part of state vector such that r; and o2 are not
changing with time. Thus, in the following experiment, we only estimate the time-varying frequency of spectral
peak.

To this artificial data, we have applied our model with the following conditions. The number of particles is 1000,
maximum number of peaks is 10, and initial value of peak frequency for each particle is taken uniformly random
in range [0, 7]. All another values that are constant in time is assumed to be known. With mutation rate 0.01
and crossover rate is 0, we estimate the state vector by Monte Carlo filter and genetic algorithm.

The estimation result of time-varying order of autoregression is shown in Figure 4. Since the result consists of
distribution of particles in autoregressive order 0,1, ---,10, we use contour map to figure the distribution on the
paper. Estimated result of peak frequencies are shown in Figure 5 with true frequencies with dotted three lines
as mentioned above. Estimated peaks are denoted by plots in the figure for each time.

By looking the result of estimated order, the true order can be estimated in most of the series. Also looking
the result of peak estimation, estimated plots follow the true peak and new peak appears when the order of
autoregression is changed.
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Figure 4: Estimated order of autoregressive
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Figure 5: Estimated peaks



CONCLUSION

A new model for nonstationary spectral analysis with time-varying order of autoregression is proposed. The
model is an extension of time-varying coefficient autoregressive model to have time-varying order of autoregres-
sion. For the state estimation of the mode is done by Monte Carlo filter and genetic operation. For continuous
parameters in state, such as spectral peak parameters, can be estimated by Monte Carlo filter, and combination
of peaks among state vector can be estimated by genetic operations. Through the genetic operation, the optimal
order of autoregression can be obtained in the same time. By a simple simulational experiment, the esimation
result of spectral peaks and autoregressive order for artificially generated data has been demonstraited.
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