Adaptive Estimation of Power Spectrum by using Genetic Algorithm
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ABSTRACT

A new method to make an adaptive estimation
of nonstationary power spectrum is proposed. The
method uses a new model based on time-varying co-
efficient autoregressive (AR) model in which order of
autoregression is also varying with time. Nonstation-
arity of power spectrum can be obtained by estimating
the time-varying coefficients, and abrupt change of the
structure of spectrum can be estimated by the time-
varying order. The model is written in state space rep-
resentation with system model that defines smoothness
of time-varying parameters and observation model con-
sists of the time-varying parameters AR model. Monte
Carlo filter and genetic algorithm, they are very sim-
ilar except crossover, are used for estimation of the
AR coefficients and the order, respectively. Simula-
tional experiment shows the estimation result by the
proposed method.
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1. INTRODUCTION

Spectral analysis [12] is widely used in the field of en-
gineering. The methods for stationary spectral anal-
ysis have been well established and used in practice.
On the other hand, spectral analysis methods for non-
stationary time series do not always produce satisfac-
tory results and thus that still remain as a topic to
investigate. The use of time-varying coefficients of au-
toregressive model is one of the possible way to do the
investigation of nonstationary spectral analysis.

Time-varying coefficient autoregressive model was
proposed by G.Kitagawa and W.Gersch in 1985 [10] in
a context of time series analysis by statistical method.
Although there are early researches of similar methods
in the area of recursive estimation e.g. by R.C.K.Lee
in 1964 [11], however, likelihood is effectively used for
the estimation of trade-off parameters in the research
by G.Kitagawa. The use of likelihood is originally pro-
posed by H.Akaike in 1980 [2] as a problem of penal-
ized least square, but not recursive least square. This
i1s a successful example to introduce the idea of re-

cursive estimation to the objective determination of
hyper-parameters(trade-off parameters).

In time-varying coefficient autoregressive model, the
order of autoregression can be determined by Akaike
information criterion(AIC) [1] when the order can be
assumed to be constant through the data. However,
when we need to assume the order changing with time
in the data, and we have no a priori information about
the change of order, we have to examine all combina-
tion of changes of the order through the data in order
to estimate the AIC best combination of the orders.
The combination will easily explode even by taking
small order, such as 10, as the maximum candidate
order. For the estimation of the autoregressive order
changing with time, the idea of recursive estimation
is considered as a effective way to lessen the combina-
tional explosion.

Recently, a new method called Monte Carlo filtering
has been proposed by G.Kitagawa(1996) [8] for non-
Gaussian nonlinear state space modeling. In Monte
Carlo filtering, particles that are considered as realiza-
tions from non-Gaussian distribution are used to the
approximation of non-Gaussian distribution. Since the
filtering procedure is done by manipulating each par-
ticle, computational cost of Monte Carlo filtering is
the order of the number of particles. This is a reduc-
tion of computational cost from the exponential order,
which is a cost of computation by a method proposed
by G.Kitagawa(1987) [7] to approximate the distribu-
tion by partially linear function, to the number of par-
ticles. Thus non-Gaussian nonlinear filtering is now
more practical than the former times.

By using Monte Carlo filter, it becomes possible
to investigate a nonlinear state space model that has
time-varying autoregressive coefficients and autore-
gressive order together. In our research, an adaptive
method to estimate time-varying autoregressive coeffi-
cients and autoregressive order together from data is
proposed. The method is based on time-varying coef-
ficients autoregressive model, and the order of autore-
gression 1s also varying with time. Estimation of time-
varying coefficients is done by Monte Carlo filtering,
and time-varying order of autoregression is estimated



by genetic algorithm.

Let characteristic root of AR(2) (second order AR
model) be denoted by reti® @ and r are equal to peak
frequency and bandwidth of power spectrum, respec-
tively. By using this property, and regarding the pro-
posed model as a sequential system consists of AR(2)s,
the AR coefficients are parametrized by pairs of peak
parameters 63 and rg.

State vector consists of P pairs peak parameters and
corresponding P-bits gene. Peak parameter is selected
and used for the calculation of AR coefficients when the
bit corresponding to the peak is equal to 1. Thus the
number of value-1-bit is the number of peaks, where
twice of number of peaks is equal to the AR order.
Smooth change of peak parameters are represented in
system model by system noise, and the change of gene
is governed by genetic operation such as mutation and
crossover in order to select the better combination of
peak parameters.

By a simulational experiment, the efficiency of pro-
posed method is checked.

2. MODEL

Problem in this research is firstly defined. Necessity
of smoothness prior is mentioned related to the prob-
lem definition. After that, a new model to solve the
problem is defined, and smoothness prior for the model
is shown.

Problem

Let time series data be given by

YN:{yl)y21"':yN}' (1)

Assume that power spectrum of the data has several
peaks and the peaks are smoothly changing, and the
number of peaks is not constant among the series.

Problem we concern here is to fit the autoregressive
model with varying coefficients, a; ;, and even order,
2p;, denoted by

2p:

Yt = Z @it Yi—j + &t (2)
j=1

where ¢; ~ N(0,0?), i.i.d., and thus we obtain time-
varying power spectrum of the model as follows,
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Smoothness Prior

In the model fitting, parameters to be estimated
from data are time-varying coefficients a;;, time-
varying order p;, and variance ¢2. Note that the num-
ber of parameters to be estimated is Zf\;l 2p++ N +1
and is, in general, greater than the number of data, N.
It is so even in the case the order is constant with time.
Consider the case of constant order, p, for a while. To
estimate the parameters in this situation, there is a
research Time-varying coefficient autoregressive model
proposed by G.Kitagawa and W.Gersch in 1985 [10] in
a context of time series analysis by statistical method.

Although there are early researches of recursive es-
timation e.g. by R.C.K.Lee in 1964 [11], however, like-
lihood is effectively used for the estimation of trade-
off parameters (hyper-parameters) in the research by
G.Kitagawa and W.Gersch. The use of likelihood
is originally proposed by H.Akaike in 1980 [2] as a
problem of penalized least square, and developed by
G.Kitagawa [6] as recursive least square with Kalman

filter.

According to [10], by assuming smoothness prior of
time-varying coefficients, in which smoothness is with
respect to time ¢, such as

Aaj,tNN(OJTQ)) j:l,“',p, (4)

where A is difference operator defined by

Ay =y —yi1, AA" = A™H (5)

we can estimate all parameters from data.
Model Definition

We use the following autoregressive model with time-
varying coefficients

2P

ye= aj(xe) yoj + e (6)

j=1

where ¢; ~ N(0,0?), i.i.d. . Time-varying coefficients
denoted by a;(x;) are parametrized by state vector

x;=[ 1y, 0r, g 1" (7)

The state vector consists of a vector of bandwidth r;
and frequency 6; of power spectrum peaks such that

ry = [ Ti,ty) T2ty " TPt ]T (8)
gt = [ 61,t; 62,t) Tty HP,t ]T) (9)

and a vector g;. We call g; ”gene” since this is denoted
by sequence of bit as follows,

gt :[ g1ty 92,ty "5 9Pt ]T' (]‘0)



Role of the gene is to specify which peak is active.
When j-th bit, g; ;, is equal to 1, corresponding peak
parameters such that r; ; and 0; ; are used. Thus actual
order of autoregression in (6), denoted by 2p;, where
p: 1s equal to the number of bits of value 1, i.e.

P
Pt = Zgj,t- (11)
j=1

Note that the actual order of autoregression is common
to that appeared in (2).

The role of the gene to select the peaks is illustrated
in Figure 1.

Since the actual order of autoregression is p;, autore-
gressive coefficients that lag is greater than p; is equal
to zero, i.e. aj(x;) = 0 for j > p;. How to calculate
the remaining coefficients is according to the manner
proposed in [5]. Consider a characteristic equation of
autoregressive model of order 2p,

2py
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j=1

where B corresponds to backward shift operator such
that By; = y:—1. Assume that all the roots of charac-
teristic equation are complex, and denoted by rjeiwf,
then we regard r; and 6; of characteristic roots as the
bandwidth and frequency of spectral peak. They corre-
spond to spectral peaks of second order autoregressive
models of sequentially connected system, and we esti-
mate the peaks in this meaning. This is illustrated in
Figure 2.

Smoothness Prior of The Model

Smoothness prior of the model is defined for spectral
peak parameters

Arj,t ~ N(O,Tg), (13)
Agj,t ~ N(O)TGQ)) ]: 1)"'1p' (14)

For the gene, mutation and crossover of genetic oper-
ation [3] are employed as the smoothness prior. The
rates of mutation and crossover are denoted by P,, and
P,, respectively. The reason to use genetic operation
as the representation of smoothness prior is based on
the similarity of nonlinear state space model and ge-
netic algorithm shown by T.Higuchi [4]. As in the next
section, one-step-ahead prediction in state estimation
procedure is adding noise vector into state vector. Ge-
netic operations, mutation and crossover, are just this
operation of adding noise into gene.

3. Estimation

To estimate time-varying parameters of the proposed
model, general state space model is firstly summarized

and transform the proposed model into it. Secondly,
as a state estimation method, Monte Carlo filtering is
summarized. Relationship between Monte Carlo filter-
ing and genetic algorithm is also mentioned.

General State Space Model

General state space model that consists of system
model and observation model is as follows.

x; = g(Xt—1,Wi) (15)
Yo = h(xe) (16)

In our model defined in previous section, (6) is the
observation model (16). System model (15) represents
smoothness prior (13), (14), and genetic operations for
gene. System model can be written by separately as
follows,

r, = T+ W, (17)
0; = 6i_1+woy, (18)
g = fga(gi—1|Pm,Pe), (19)

where w,; ~ N(0,72) and wg; ~ N(0,77), and
foa(:|Pm, P.) represesnts genetic operation given the
mutation rate P,, and the crossover rate P,.

Monte Carlo Filtering

For the general state space model (15) and (16),
state estimation will be done by Monte Carlo filtering
[8]. The idea of Monte Carlo filtering to approximate
the non-Gaussian distribution by realizations of the
distribution and manipulate the realizations instead of
distribution itself. The procedure of Monte Carlo fil-
tering consists of the one-step-ahead prediction and the
filtering described as follows.

One-step-ahead Prediction: One-step-ahead pre-
diction distribution and filtering distribution are ap-
proximated by realizations of their distribution as fol-
lows.

Pt = {p(lt)apgt)angl?} ~ p(xth/t—l) (20)
Foo= {6767 60} ~ pxv)  (21)

We call these realizations ”particles”.

The initial distribution denoted by F is given as
follows.

o= {£0. 67, D] ~ pixolve)  (22)

One-step-ahead prediction is done by the following
(t)

procedure. w;

pi”) = g wit)) (23)
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Figure 1: Selection of peaks(characteristic roots) by gene(bit sequence)
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Figure 2: Sequential system of AR(2) consists of selected peaks

Filtering: Filtering is done by the following proce-
dures. Firstly, likelihood of each particle is calculated
by

ol = plulpl"”) = ’“( P ) > (24)

where we assume for y = h(z,z) in (16) that there
exist a function h=1(-,.) such that = h=1(y,z). r(-)
is density function of ¢;.

Secondly, filtering particles are obtained by doing
resampling according to the following probabilities.

p{"’ with prob. a{’/ 31, al"

f](t) = pgct) with prob. ozgct)/ Zj‘il Cvg»t) (25)

PS\? with prob. O‘S\ff)/zjﬂil ag't)

Likelihood: Likelihood of the model is approximately
obtained from likelihood values of each particle in fil-

tering procedure, a; ¢, for all time ¢ =1,--- N as fol-
lows.
N
) = Zlogp(ytm_l)
t=1
N M
t
~ Slog | Yol | — Nlog M (26)
t=1 j=1

Where, o is a vector of hyperparameters 72, 77, P,
and P,,.

The hyperparameters are estimated to maximize the
likelihood. However, exact numerical optimization to
obtain the maximum of likelihood is useless in the sit-
uation of Monte Carlo method. Currently, make a grid
search in the hyperparameter space and plot contour
to obtain the optimal combination of them is practical.
As an another method to avoid this problem, involving



Table 1: Relationship between GA and MCF

GA MCF
individual particle
mutation  one-step-ahead prediction
crossover -
fitness likelihood
selection resampling

hyperparameters into a state vector and estimate them
simultaneously is proposed [9].

Similarity to Genetic Algorithm

Although, Monte Calro filtering is developed in the
context of non-Gaussian nonlinear state space model-
ing and its state estimation method, and it is not moti-
vated by nature of biological system, there are similari-
ties to operations of genetic algorithm. By considering
both Monte Calro filtering and genetic algorithm are
developed in the literature of adaptation, the similar-
ity is not a coincidence, rather it can be considered as
the necessity.

According to the Higuchi’s research [4], by regarding
particles appear in Monte Carlo filtering as individ-
uals of genetic algorithm, we can see similarities be-
tween Monte Calro filtering and genetic algorithm as
shown in Table 1. One-step-ahead prediction of Monte
Carlo filtering corresponds to mutation operation in ge-
netic algorithm, likelihood of each particles to fitness
of each individual, and resampling to selection. There
is no operation in Monte Carlo filtering corresponds
to crossover in genetic algorithm directly, however, by
considering a operation (19), crossover operation can
be incorporated into Monte Calro filtering procedure.

4. SIMULATIONAL EXPERIMENT

By numerical simulation, time series data shown in
Figure 3 are generated. The data have nonstationary
power spectrum that peaks are changing as follows,

6., = 0.310+0.004 x 1,
it = 0.8,
foy = 2944 —0.004 x 1, (27)

Tt 0.5+ 0.001 x (¢t — 1),

where the second peak denoted by 75 ; and 85 ; is used
int = 151 ~ 300, i.e., the number of peaks p is 1
t=1~ 150, and p = 2 in ¢t = 151 ~ 300. The peak
frequencies denoted by 6, ; and 6, ; are shown in Figure
5 by solid line. AR coefficients used for data generation

to have those characteristic roots are calculated by

aj; = 2ryzcosfyy (28)
— 2
az¢ = —Tig
for t =1 ~ 150, and by
ar; = 2ripcosfys+ 2rascostay
— 2 2
Azt = —Ti1:" —Tay
—4ry 1791 cos by 4 cos by (29)
— 2 2
as; = 2rysraq costy s+ 2ry 7y s cos sy
— 2, 2
Aa¢ = —T13¢ T

for t = 151 ~ 300 [5].

Conditions of estimation by proposed model are as
follows. The number of particles is set to 1000. As the
hyperparameters, genetic operation rates are P, = 0.05
and P,, = 0.01, variances of system noise are 7,2 = 0.01
and 77 = 0.01.

Since bandwidth r; takes value in (0,1), and fre-
quency 0y takes value in (0, 7), numerical treatment of
state variables not to be take out of range is required.
Use of logistic function is better mathematically, how-
ever, it takes computational cost in calculation of log-
arithm and exponential. In this experiment, we use a
method to make boundary to the state variables, i.e.
it takes boundary value when it is out of range in the
procedure of one-step-ahead prediction.

The estimated number of peaks varying with time
is plotted in Figure 4. In this figure, the mode of dis-
tribution of estimated peak number is plotted at each
time. Peak frequencies estimated by the model are
plotted in Figure 5. In the plot, median of estimated
distribution for the peak number equal to the mode is
used. Bandwidths are also estimated and by combining
with estimated peak frequencies, nonstationary power
spectrum can be obtained. Nonstationary power spec-
tra estimated by the proposed method are plotted in
Figure 6.

By looking the estimated result for time-varying
peak number in Figure 4, the number of peaks started
from 1 and changed to 2 after £ = 150. Estimated
peaks in Figure 5 are placed around the true peaks
plotted by solid line in this figure. In Figure 6, non-
stationary power spectra estimated by the model are
corresponding to the result of peaks estimation. That
started from one peak at low frequency, and gradually
increasing the frequency. After ¢ = 150, second peak
appeared and moving to lower frequency.

5. CONCLUSION

A new model to estimate nonstationary power spec-
trum adaptively is proposed. The model is defined by
spectral peaks of AR(2) denoted by characteristic root



Figure 3: Simulation data
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Figure 4: Estimated number of peaks

and sequence of bits called ”gene”. By selecting the p-
peaks corresponding to the value-1-bit of gene, AR(2p)
is constructed by the peaks to represent power spec-
trum at the time. Applying Monte Carlo filter and
genetic operations of mutation and crossover, we can
estimate these time-varying parameters. From the es-
timated parameters, we can obtain the time-varying
power spectrum. The performance of the method is
shown by simple numerical simulation.
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