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ABSTRACT

A new method for target tracking of multiple points on an
object by using particle filter with its novel importance func-
tion is proposed. The assumptions are such that the number
of points is fixed and known, and the association between
points of object and observed points are unknown. There
exists missing and clutter in observation process where which
observation corresponds to them are also unknown. The
main difficulty of this problem is the formidable number
of combinations in the association. The novel importance
function using an idea of soft gating makes the problem
tractable in a proper framework of particle filter. Simula-
tion experiment illustrates the performance of the method.

1. INTRODUCTION

Target tracking is one of the most classical and important
applications of filtering techniques. Many models have been
proposed to deal with various tracking situations since the
Kalman filter was proposed. Recently, computer intensive
methods for filtering, called ”particle filters” [3] [6] or se-
quential Monte Carlo (SMC) [1] [7], have been developed
and used for the tracking problem, see, e.g., [8].

In the current researches, multiple target tracking, e.g.
[4], is a challenging problem where associations between
measurements and the state are unknown. The problem
setting is that several points on an object can be observed
due to high resolution of sensor but there is no information
about that which observation corresponds to which point on
the object. We call the object with multiple points as “ex-
tended object”. The main difficulty of the problem is the
formidable number of combinations in the association. For
example, if the number of targets is fixed as 10, the number
of permutations
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is already large, further-

more, the number of combination will increase when there
are missing data and clutter in the observation process.

To deal with this huge number of combinations, a tra-
ditional idea called gating is to select the meaningful as-
sociations based on the information in observed data. An
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extension of this idea to particle filters was proposed in [4],
where hypotheses of the association are selected by gating
while the target’s state is estimated by particle filters. On
the other hand, [5] proposed a full implementation of parti-
cle filters in a general framework of the jump Markov model
[2], in which full estimation is carried out for both the tar-
get’s state and the association.

In this paper, we propose a new method to deal with
tracking of an extended object under the condition of un-
known associations, missing observations, and clutter. The
method uses a full implementation of particle filters where
all points on the object share the same velocity of the object.
The novelty of the method is on a new sub-optimal impor-
tance function for the association using the ideal of soft gat-
ing. This formulation allows us to use the gating idea in a
proper SMC framework, see [5] for related topics, and over-
comes the association problem without having to enumerate
all states, or introducing further approximation. Simulation
experiments will illustrate the performance of the proposed
method.

2. MODEL

Consider that ��� points are on the object in a � -dimensional
space. In real situation, , for example, this is due to high
resolution of the sensor that can resolve the points on an
object. Some of the points on the object, i.e. not necessar-
ily all, are observed for each time. The observations may
contain clutter points, which are wrong detection of points
at non-existing positions of the target due to bad sensing
conditions. Assume that we know neither which observed
point corresponds to which point of the object, nor which
observed point is the clutter. Here we assume that ��� is
fixed and known.

Let � be an integer denoting the discrete time index of
observations, and the number of observed points at time � ,��� , is given together with the observation. At time � , let����� ���! �"$#&%'� � 	 �(�*) be the number of detected points of
the target, and let �,+ � � be the number of clutter points, thus� � � � �-� �-. ��+ � � holds.

To summarize, both �/�-� � and � + � � are assumed to be



unknown, as well as association between observed points
and target points are unknown.

2.1. System model

Let 021�3 4 be a 5 -dimensional vector that denotes 6 -th point
of the target at time 7 where the origin of the vector is at the
center of gravity of the target, so 8:9<;1�=&> 021�3 4@?!A holds.

Let BC4 be a 5 -dimensional vector that represents the cen-
ter of gravity of the target points at time 7 . Suppose that B 4
moves according to the following dynamics:D B 4EBC4GF ? D:H HI H F D B 4KJL>EBC4KJL>MF�N D I H F-O&P4 (1)

where O P4RQTSVUXWZY\[�]P H_^ is the system noise, representing
uncertainty about the maneuver of the target by a Gaussian
distribution.

When we assume a rigid object as the target, the dy-
namics of each point of the target are supposed to be con-
stant with respect to time such that 0 1�3 4 ?`0 1�3 4KJL> for 6M?a YcbdY_e�e_efY�S�g . Otherwise, the dynamics involve system noise
terms O&h1�3 4 QiSVU A Y�[�]h H_^ as 021�3 4j?k021�3 4KJL> N:OZh1�3 4 for 6G?a YcbdY_e�e_efY�S g .

By formulating a state vector as0 4 ?mln0 g] 3 4 Y_e�e_eLY 0 g9o; 3 4 Y B g 4 Y EB g 4Lp g Y (2)

where 0 g denotes transpose of 0 , we have a system model
of the problem in the form of a linear Gaussian difference
equation as 0 4 ?!q-0 4KJL> NsrtO 4 (3)

with proper definition of matrices q and r as described
above.

2.2. Unknown Association

Let uv 1�3 4 be the true position of 6 -th point of the target; then
we have uv 1�3 4@?:021�3 4 N BC4 Y (4)

for 6(? a Y�b�Y_e_e�efY�S(g . On the other hand, the 5 -dimensional
observation at time 7 is denoted by v 1�3 4 for 6�? a YcbdY_e�e_efY�S 4 .
According to the assumption of unknown associations, we
know neither which observation is clutter nor which obser-
vation corresponds to the points on the object.

To deal with the unknown association between the target
points and the observed points, we introduce an association
vector that consists of S 4 -tuples of integers such thatH 4 ?xw y >z3 4 Y y ] 3 4 Y_e_e�eLY y 9<{ 3 4�| g Y (5)

where y 1�3 4j}!~ A Y a Y�e_e�e2Y�S�g�� for 6j? a Y�b�Y_e_e�efY�S 4 . Here,y 1�3 4 ?����!A means 6 -th observation comes from � -th point
of the target, and y 1�3 4 ?�A means 6 -th observation is a clut-
ter. In the next subsection, the association vector specifies
the association between observed points and target points in
the observation equation.

2.3. Observation model

At time 7 , let v 4 be an observation vector that consists ofv 1�3 4 for 6R? a YcbdY_e�e_efY�S 4 , and let � 4 be a vector of ob-
servation noise that consists of � 1�3 4 for 6�? a YcbdY_e�e_eLY�S 4 .
Each � 1�3 4 is assumed to be a Gaussian random vector with
zero mean and identity covariance matrix, both mutually in-
dependent and independent of the other variables. Now, we
can write the observation process byv 1�3 4@? 9 ;� � =L�<� � 3 ����� { uv � 3 4 N�� ] U y�1�3 4 ^ ��1�3 4 Y (6)

where the symbol � � 3 1 is the Kronecker’s delta, uv �_3 4(���v is
the central position of the surveillance range, and

� ] U y 1�3 4 ^ ?�� � ] Y y 1�3 4��?�A Y� � ]�Y y 1�3 4 ?�A Y ��� a (7)

is employed to deal with the clutter.
Now, observation model can be denoted in a general

form by v 4@?!� U H 4 ^ 0Z4 N�� U H 4 ^ ��4 (8)

where � U H 4 ^ and � U H 4 ^ are matrices depending on the as-
sociation vector

H 4 of eq.(5). These matrices are properly
defined as described above.

Then, we can form a jump Markov linear system by
pairing the observation model eq.(8) and the system model
eq.(3). In the context of jump Markov linear systems, it is
often assumed that

H 4 is a Markov process. However in our
problem, it is independent, i.e.,   U H 4�¡ H 4KJL> Y H 4¢J ] Y_e_e�e£Y H � ^ ?  U H 4 ^ holds.

2.4. Assumptions for the observation process

We need further definitions and assumptions for the obser-
vation process on detection probability, probability of clut-
ter, and permutation of observed points, as follows.

Let ¤2¥ be a probability of detection of each target, uv 1�3 4
for 6!? a Y�b�Y_e_e�efY�S g . The detection process is assumed
to be independent for each target and independent of the
target’s state vector. Then, the number of detected points,S ¥�3 4 , is drawn according to a binominal distribution, i.e.,S ¥�3 4 Q!¦/UXS�g�Y ¤ ¥ ^ .

The number of clutter points, S�§ 3 4 , is assumed to be
drawn according to a Poisson distribution, i.e., SM§ 3 4 Q
Poisson U'¨Z© ^ , independently of time, 7 , where © is the

volume of surveillance and ¨ is a spatial density of clutter.
The permutation of detected points and clutter points are

assumed to be uniformly distributed, i.e. there are S 4Cª com-
binations for it; each with the same probability

a¢« S 4Cª .



3. STATE ESTIMATION BY PARTICLE FILTERS

The aim of filtering is to obtain the conditional distribution

of the augmented state vector ¬2¯®m°n±£²´³�µ ²f¶ ² , given obser-
vations up to · , ¸º¹�» @¼x½¾¸&¹ ³ ¸£¿ ³_À_À�À£³ ¸Z�Á , that is, Â&½'¬C�Ã ¸&¹�» *Á .
Note that it is obtained from Â&½'¬�Äz» �Ã ¸&¹�» *Á with its marginal.

3.1. Particle filters

Particle filters use many (say Å ) particles Æ\Ç¢ÈnÉËÊÌÎÍ Ï�Ð�ÑÉËÒÔÓ to ap-
proximate conditional distribution Â&½X¬�ÄÕ» �Ã ¸&¹�» *Á , where par-
ticles Æ\ÇzÈÖÉËÊÌ\Í Ï�Ð ÑÉËÒÔÓ are considered as that drawn from the condi-
tional distribution.

Particles are updated, when a new observation ¸  be-
comes available, as follows [1], [7]. Assume that parti-
cles at time ·j×�Ø , Æ\Ç ÈÖÉËÊÌ\Í ÏzÙ Ó Ð ÑÉËÒÔÓ , are given. First, for Út®Ø ³cÛd³_À�À_Àf³ Å , draw new particles Ü¬dÝÖÞ$ß from a distribution,à ½ÎÜ¬  Ã ¬dÝÖÞÖßÄÕ» ¢áL¹ ³ ¸ ¹�»  Á , which is called “importance function”

or “proposal” distribution. And we let Ü¬ ÝÖÞÖßÄÕ»  ®�½'¬ ÝÖÞÖßÄz» Ká£¹ ³ Ü¬ ÝÖÞ$ß Á .
Then, calculate a weight for each particle byâ Ý$ÞÖßäã Â&½'¸  ÃÖÜ¬dÝÖÞÖßÄÕ»  ÁåÂ&½\Ü¬dÝÖÞ$ß Ã ¬�ÝÖÞÖßÄz» Ká£¹ Ácæ à ½\Ü¬dÝÖÞ$ß Ã ¬�ÝÖÞÖßÄz» Ká£¹ ³ ¸ ¹�»  ÁÕç (9)

Finally, proceed by resampling from Æ�èÇ ÈÖÉËÊÌ\Í ÏKÐ ÑÉËÒCÓ with a proba-

bility proportional to the value of weight â ÝÖÞÖß , specifically,

for é�®�Ø ³cÛd³�À_À_Àf³ Å , let ¬ Ý$êëßÄz» íì ®�Ü¬ ÝÖÞ$ßÄÕ»  with probability pro-

portional to â ÝÖÞÖß . Then, we obtain particles, Æ\Ç Ènî$ÊÌ\Í ÏKÐ ÑîëÒCÓ , which
are approximately the particles drawn from Â&½X¬fÄÕ» �Ã ¸&¹�» *Á .

Actual computation proceeds only with ÆÎÇCÈËîëÊÏtÐ�Ñî$ÒÔÓ , it is for
marginal Âo½'¬d�Ã ¸&¹�» *Á , by discarding Æ\Ç ÈËîëÊÌÎÍ ÏcÙ Ó Ð�Ñî$ÒÔÓ in the above.

3.2. Rao-Blackwellization

Since the model is linear if µ Äz»  is given, we can use a vari-
ance reduction method called Rao-Blackwellization (RB)
for the filtering [1]. Here, variance of the weight in eq.(9)
with respect to the draw of Ü¬ ÝÖÞ$ß is reduced by RB method.
Hence variance of the estimates derived from the condi-
tional distribution Âo½'¬ÔÄÕ» �Ã ¸&¹�» �Á will also be reduced. For
more theoretical detail, see [1].

In RB method, the target distribution is decomposed
as Âo½'¬ ÄÕ»  Ã ¸ ¹�»  Áï®ðÂo½ µ ÄÕ»  Ã ¸ ¹�»  Á¾Â&½¾± ÄÕ»  Ã µ ÄÕ»  ³ ¸ ¹�»  Á , where the
second distribution is Gaussian, so, for given µ ÄÕ»  , analytic
solution can be obtained by Kalman filter based algorithm.

Actual computation proceeds as follows. Âo½ µ  Ã ¸ ¹�»  Á is
estimated by particle filters using particles Æ\ñ ÈÖÉËÊÏ�Ð ÑÉËÒCÓ whileÂ&½'±Z�Ã µ ÝÖÞÖßÄz»  ³ ¸&¹�» *Á is obtained by a Kalman filter with its mean

vector ò± ÝÖÞÖßôó  and covariance matrix õ ÝÖÞÖß*ó  . Let the particles

at time ·�×`Ø denoted by Æ�ñ ÈnÉËÊÏcÙ Ó Ð ÑÉËÒÔÓ be given, and let the

mean vector ò±<ÝÖÞÖßKá£¹Õó Ká£¹ and covariance matrix õsÝÖÞÖß¢áL¹_ó KáL¹ forÚ<®`Ø ³�Û�³_À_À�ÀL³ Å also be given. Then, update procedure for
a given observation ¸� proceeds as follows; First Üµ ÝÖÞÖß for ÚZ®

Ø ³cÛd³�À_À_ÀL³ Å are drawn from a proposal à ½ Üµ  Ã µ Ý$ÞÖßÄÕ» KáL¹ ³ ¸ ¹�»  Á .
Next, the mean vector and the covariance matrix are are
updated to · by Kalman filter procedure, then we obtain
the mean vector Üò± ÝÖÞÖßôó  and covariance matrix Üõ ÝÖÞÖß*ó  of the

Gaussian distribution Â&½'±  Ã Üµ ÝÖÞ$ß ³�µ ÝÖÞ$ßÄÕ» KáL¹ ³ ¸ ¹�»  Á . Where, we

can obtain the likelihood of ¸� , Âo½¾¸Z�Ã Üµ ÝÖÞ$ß ³�µ Ý$ÞÖßÄÕ» KáL¹ ³ ¸&¹�» KáL¹�Á ,
through the Kalman filter procedure. Now we can calculate
the weights for new particlesâ ÝÖÞÖß ã Âo½¾¸  Ã Üµ Ý$ÞÖß ³�µ Ý$ÞÖßÄÕ» KáL¹ ³ ¸ ¹�» KáL¹ ÁÎö,½ Üµ ÝÖÞÖß Ã µ Ý$ÞÖßÄÕ» KáL¹ Áà ½ Üµ ÝÖÞÖß Ã µ ÝÖÞÖßÄÕ» ¢áL¹ ³ ¸&¹�» �Á ç (10)

By resampling from a set with elements be tuples of particle,

mean vector, and covariance matrix, ÷ùø Üµ ÝÖÞ$ß ³ Üò± ÝÖÞÖßôó  ³ Üõ ÝÖÞÖß*ó ôúoûKüÞÖý ¹ ,
we obtain particles ÷ µ Ý$êëß û üêëý ¹ together with ò± Ý$êëßôó  and õ Ý$êëßôó 
for éº®þØ ³cÛd³�À_À_ÀL³ Å .

3.3. Importance function

Design of the importance function is a key for particle filters
to have efficient estimation results. Here we suggest a novel
importance function of the following formà ½ µ �Ã ±ZKáL¹ ³ ¸Z�Á�® à ½Xÿ�¹�� �Ã ±Z¢áL¹ ³ ¸&¹�� *Á� à ½'ÿÕ¿�� �Ã ±ZKá£¹ ³ ¸£¿��  ³ ÿ�¹�� *Á

...� à ½'ÿ�� Ï �  Ã ± Ká£¹ ³ ¸�� Ï �  ³ ÿ ¹��  ³ ÿ ¿��  ³_À_À�ÀL³ ÿ�� Ï á£¹��  Á ³
(11)

where à ½Xÿ ¹��  Ã ± Ká£¹ ³ ¸ ¹��  Á is proportional toØ� ½'ÿ ¹��  Á 	�
�� � � × ØÛ � ¿ ½Xÿ ¹��  Á ����� ¸&¹��  × ���� êëý Ä�� ê � � Ó�� Ï Ü¸ ê � 
�����
¿�� �
� ³
(12)

and à ½Xÿ_¿�� �Ã ±ZKá£¹ ³ ¸£¿��  ³ ÿ�¹�� *Á , à ½Xÿ���� �Ã ±ZKáL¹ ³ ¸����  ³ ÿ�¹��  ³ ÿÕ¿�� *Á ,À_À�À are similar form except there is no probability for ÿ���� 
to take the same value of ÿ ê �  , for é! #" .

The proposed method uses a soft gating function in a
proper SMC framework, thus it overcomes the association
problem without enumerating all states, or introduce further
approximation. See [5] for an alternative use of gating ideas
with SMC.

4. SIMULATION EXPERIMENT

Two simulation experiments have been carried out to illus-
trate how the proposed method works. One is 1-dimensional
tracking for $ ² ®iØ&% target points of ·j®mØ ³_À_À�Àf³�' % withö�( ®)%�ç+*-, , . ® Ø/, , 0 ®)%�ç Û and � ¿ ® Ø/% á2¿ . The
other is tracking in 3-dimension for $ ² ®1, points of ·�®Ø ³�À_À�ÀL³ ,-% with ö�(`®2%�ç3, , . ® ' ç ' *4, � Ø&%�5 , 0s®6%�ç %�, �
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Fig. 1. Estimation results of 1-dimension for 10 points.
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Fig. 2. Estimation results of 3-dimension for 5 points.

7&8:9<;
and =�>@? 8:AB7

. Rigid object moving without rotation
is assumed here for both cases.

Conditions of state estimation are as follows. For 1-
dimensional case, CD? 7&8FE�848�8

particles are used with sys-
tem noise variance G<>H ? 7&8�9 > , and clutter factor IJ? 7&8:K

.
For 3-dimensional case, CL? 7�E�848�8

particles are used withG:>H ? 7
and IM? 7&8ON

.

Estimation results are shown in Fig.1 and Fig. 2. In
these figures, plotted symbols represent the observation data,
and lines denote the estimation result which is the mean of
the estimated distribution. Estimation results of associations
for the beginning part of the 3-dimensional data are shown
in Table 1. In results of Fig.1 and Fig.2, true data are al-
most identical to the estimated states, although they are not
plotted in these figures.

Table 1. Estimation results of association.P
estimated association (true association)

1 2 (2) 5 (4) 3 (3) 0 (5) 1 (1)
2 1 (1) 4 (4) 2 (2) 3 (3) 5 (5)
3 4 (4) 2 (2)
4 5 (5) 4 (4) 3 (3) 2 (2)
5 1 (1) 0 (0) 5 (5) 0 (0) 0 (0) 0 (0) 3 (3)
6 3 (3) 0 (0) 0 (0)
7 5 (5) 4 (4) 1 (1)
8 0 (0) 4 (4) 0 (0) 0 (0) 0 (0)
9 5 (5) 2 (2) 0 (0) 3 (3) 4 (4)

10 5 (5) 3 (3) 0 (0) 0 (0) 0 (0)
11 1 (1) 0 (0) 5 (5)
12 0 (0) 1 (1) 4 (4) 5 (5) 0 (0)

5. CONCLUSION

A new method for tracking of multiple point targets of ex-
tended object by particle filter with elaborated importance
function has been proposed. Simulations illustrate perfor-
mance of the method for a rigid object in parallel motion
case, with simultaneous estimation of the points trajectories
and the associations in a particle filter framework.

For future researches, extensions of the proposed model
to involve rotation of object and to bearings only observa-
tions, using an extended Kalman filter for both cases, are
interesting. Further extensions to deal with multiple objects
independently moving are more challenging and also inter-
esting for future research.
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