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Abstract Tracking problem of maneuvering target
with assumption that the maneuver is unknown and
its acceleration has some abrupt changes is treated
by formulating general (nonlinear, non-Gaussian)
state space model with system model to describe
the target dynamics and observation model to rep-
resent a measurement process of the target posi-
tion. Bayesian switching structure model, which in-
cludes a set of possible models and switches among
them, is used to cope with the unknown maneuver.
Heavy-tailed uni-modal distribution, e.g. Cauchy
distribution, is also used for the system noise to
accomplish good performance of tracking both for
constant period and abrupt changing time point of
acceleration. Monte Carlo filter, which is a kind
of particle filter that approximates state distribu-
tion by many particles in state space, is used for
the state estimation of the model. A simple simu-
lation study shows an improvement of performance
by the proposed model comparing with Gaussian
case of Bayesian switching structure model.
Keywords: Target tracking, switching structure,
particle filter, non-Gaussian distribution.

1 Introduction

Target tracking problem can be applied to various
control problems, e.g., beam pointing control of a
phased array radar, where benchmark problem is
presented by [4]. It has been investigated actively,
especially after Kalman filter algorithm proposed,
e.g.[15]. It uses a state space model, where dy-
namics of the target is written by system model
and measurement process of the target’s position
is represented by observation model. However in
case of manned maneuvering target, there are some
changes of the target’s acceleration at the unpre-
dictable timing. Due to the change of acceleration,
mismatching of the model to the target will occur,
i.e., use of acceleration variable model to the con-
stant acceleration situation makes unstable estima-
tion, on the other hand, applying constant accelera-
tion model when the actual acceleration is changed
gives bad performance.

To overcome this, a use of Bayesian switching struc-
ture model that includes a set of possible models is
effective. A realization of this is interacting multi-

ple model that includes constant velocity model,
constant thrust model and constant speed turn
model with Kalman filter for state estimation [5].
Bayesian switching is also related to self organiz-
ing model [11] that automatically tune the hyper-
parameters of the model by augmenting the state
vector with hyper-parameters. This idea is gener-
alized to switching the model structure by adding
indicator vector of the model to the state vector [7].

On the other hand, according to the recent inves-
tigations of state estimation, several methods for
nonlinear non-Gaussian state space model are pro-
posed [6], [12], [9]. They are called ”particle filter”
in general, because of their approximation of non-
Gaussian distribution of the state by many number
of particles in state space. This idea is considered
as the special realization of sequential Monte Carlo
method [13]. Particle filter can make more pre-
cise estimation of the state than the Kalman filter
for nonlinear or non-Gaussian model, since Kalman
filter only approximates the state distribution by
Gaussian(uni-modal) while the actual one might be
multi-modal. By using particle filter, we can use
nonlinear structure model for the target tracking
problem. There is a report that shows an improve-
ment of target tracking performance of Bayesian
switching structure model with particle filter [14].

Property of non-Gaussian distribution is also useful
to improve the performance of target tracking. By
assuming heavy-tailed uni-modal distribution such
as Cauchy distribution to the system noise, abrupt
changes of the target’s acceleration can be tracked
without losing stability of constant acceleration pe-
riod [8]. The reason of this is that uni-mode and
heavy-tail of the distribution respectively represent
usual small fluctuation and abrupt change of ac-
celeration in the simultaneous manner. By using
particle filter, useful property of non-Gaussian dis-
tribution like this situation can be introduced to
the model building.

In this paper, we propose to use both of Bayesian
switching structure and heavy-tailed uni-modal dis-
tribution in the target tracking problem. A simple
simulation study shows the performance improve-
ment of the proposed model by comparing with
Gaussian system noise case of Bayesian switching
structure model.



2 Model

One dimensional target tracking problem is mod-
eled here. Random walk with respect to accelera-
tion of the target is firstly defined as a basic model.
Since random walk means almost constant at small
time interval rather than walking randomly in the
context of this research, we call this basic model
”acceleration constant model”.

After that, the basic model is extended to Bayesian
switching structure model that includes a set of pos-
sible models(candidate models) such as constant ve-
locity model, constant acceleration model, and so
on. State vector is also extended up to highest or-
der of derivative required to the candidate models,
i.e., position, velocity, acceleration, and jerk (and
higher derivatives if needed) of the target.

To switch among the candidate models, the state
vector is augmented to include indicator variable
to select one model among the candidates. Markov
switching is used to allow the indicator variable to
evolve in the system model. We assume heavy-
tailed uni-modal distribution for system noise to
follow abrupt change of acceleration.

2.1 Basic model

Let r(t) be position, s(t) be velocity, and a(t) be ac-
celeration of the target at time t. Where ¢ stands for
continuous time index. Acceleration of the target is
a maneuver and it is assumed to be unknown. Dy-
namics of the target is described by system model.
It can be written in stochastic differential equation

x(t) = Ax(t) + bug(t) (1)

where x(t) is state vector

0o 1 0
A= 0o o 1 |, (3)
0 0 0

vector b is defined as
b=[0 0 1, (4

and v, (t) is white Gaussian noise with 0 mean and

variance 7,2.

By applying time discretization to eq.(1) with sam-
pling time T (i.e. sampling point is t = Ty + kT

with discrete time index k), we have a discrete time
system model

x = Foxp_1 + gavl(ca)- (5)

Here we assume 0-th order hold to the system noise
such that v,(ca) = v,(kT), and use notations r; =

r(kT), s = s(kT), and ar, = a(kT). In eq.(5),

state vector x;, is
x, = [re sk ag |, (6)

state transition matrix F, is

1 T T?2)2
F,= 0 1 T , (7
0 0 1
and vector g, is
8 T2 !
== 7. 8
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Measured position of the target is denoted by v,
and is assumed to be obtained by observation model

Tk
ye=[1 0 O] sk [+wy, (9)
a

where w;, is white Gaussian noise with 0 mean and

variance 2.

2.2 Switching model
Candidate models to cope with model mismatching
are defined here. We prepare models with differ-
ent element of random walk, i.e., position, velocity,
acceleration, jerk(difference of acceleration) and so
on. They are as follows.

Firstly, position constant(random walk) model is

defined by

Tk =Tk—1 + TUI(CT) (].0)

(r)

where v,/ = v, (kT) is white Gaussian system noise
with 0 mean and variance 7,2. Next, velocity con-
stant(random walk) model is
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where vks) = v,(kT) is white Gaussian system noise
with 0 mean and variance 7,2. Finally, jerk con-

stant(random walk) model is
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where, ¢, = c¢(kT) stands for jerk, and v,(cc) =

v.(kT) is white Gaussian system noise with 0 mean
and variance 7.2.

Among these candidate models( eq. (5), (10), (11),
and (12) ), one must be selected as a system model.
It depends on an indicator variable that specifies
the selected model, and is denoted by 4. It takes
value equal to the highest order of the element, i.e.,
constant position model when ¢, = 1, constant ve-
locity model when i, = 2, similarly for higher value
i = 3 and 4 = 4 correspond to acceleration and
jerk constant models respectively.

Switching of the indicator variable is according to
Markov process. Transition matrix of the process
(which consists of transition probability), is, for ex-
ample, in case of four candidate models, with re-
maining probability to the same model p,, = 0.95,

Pr {Zk = ilik—l = ]} =

0.950 0.025 0.000  0.000
0.050 0.950 0.025 0.000 (13)
0.000 0.025 0.950 0.050
0.000 0.000 0.025 0.950

where columns correspond to the indicator value
before transit, and rows correspond to the after.

By augmenting state vector

ze = [ (xk)" i ]t, (14)

Bayesian switching model is written in a nonlinear
state space model as follows

Z, = F(Zk—l y Vk) (15)

In eq.(15), state transition of indicator part s has
already been shown as Markov process. State tran-
sition of ordinary part xi is

X = F(’Lk) Xp—1 + g(lk) Vi, (16)

where F(i) is transition matrix that takes appro-
priate value depending on i, and the values come
from eq.(5), (10), (11), and (12). In eq.(16), vy is
extended system noise vector defined by

t
ve = [0l o o o] )

and g(ix) is defined by similar manner of F(iy).
Since F(i;) and g(ir) depend on an element 4, of
state vector zy, eq.(16) is nonlinear. So the formula
(15) is also nonlinear equation.

2.3 Heavy-tailed system noise

Due to the property of unknown maneuver, acceler-
ation of the target may take 0, some constant value,
and some gradual change. It may also take abrupt
change among these values. It is represented by sys-
tem noise term v,(ca) of eq.(17) that corresponds to
the change of acceleration. In the conventional re-
searches, Gaussian system noise is assumed to ’U,(ca).
This causes dilemma to decide the variance of the
system noise, i.e., to follow the abrupt change, vari-
ance must be large value, however, on the other
hand, stability for constant acceleration period will
be lost.

To satisfy both requirements to follow abrupt
change and stability of constant period simulta-
neously, uni-modal heavy-tailed distribution is em-
ployed for the system noise. Where, uni-mode rep-
resents the small fluctuation with high probability
for constant period, and heavy-tail allows abrupt
change with small probability. We use Cauchy dis-
tribution for this in simulation study, since it is
typical for such distribution. Probability density
function of Cauchy distribution is shown in Fig.1
together with Gaussian distribution.

Figure 1: Cauchy distribution p.d.f. and Gaus-
sian distribution p.d.f.



3 Particle filter

Particle filter is a generic term of a nonlinear non-
Gaussian state estimation method using many par-
ticles in state space to approximate non-Gaussian
distribution of the state. There are several re-
searches separately developed in each field, Boot-
strap filter [6] from the context of bootstrap
method, Monte Carlo filter [12] from Monte Carlo
simulation point of view, and Conditional density
propagation(CONDENSATION) [9] in the field of
computer vision. Their idea is common and they
are considered as the special realization of sequen-
tial Monte Carlo method [13]. We employ Monte
Carlo filter(MCF)[12], and its algorithm is shown
as follows.

Let the observation series be denoted by

YN:{ylay%"'ayN}' (18)

The problem of state estimation is to calculate con-
ditional distribution of the state by giving the ob-
servations. Its algorithm consists of iterative appli-
cation of, one-step-ahead prediction procedure to
obtain p(zy|Yx_1), and filtering procedure to ob-
tain p(zx|Y%), according to time order. There is also
smoothing algorithm to obtain p(z|Yk4:), which is
called fixed lag(l) smoothing.

3.1 State approximation by particles

In MCF, each conditional distribution of the state is
approximated by many number of particles (realiza-
tions of the distribution). Filtering and smoothing
procedures are computationally done by using these
particles instead of analytical operation of distribu-
tion formula itself.

Let M be a number of particles. Notation of par-
ticles are as follows. For one-step-ahead prediction
distribution,

{pgk),pék), . -,pS\'})} ~ p(z&|Yi-1), (19)
filtering distribution,

{60,609, 60} ~ plal¥h), (20)
and smoothing(with lag !) distribution

{Sgk|k+l),sgk|k+l),...,Sg\’;l’*l)} ~ (21| YViegr)- (21)

3.2 Filtering algorithm

Initial distribution p(zo|Ys) is given and fi(o) (=
1,2,---, M) are calculated according to the distri-
bution. Filtering algorithm is alternative applica-
tion of two procedures according to the order of

time index k, one-step-ahead prediction procedure
to obtain particles pgk) for p(zg|Yk—1), and filtering

procedure to obtain particles £*) for (2| YE)-

7

One-step-ahead prediction procedure:

Generate random vector vgk) (i=1,2,---,M) ac-

cording to the system noise distribution, and calcu-
late particles by

p =P, v). (22)

Filtering procedure:

(k

Calculate likelihood of each particle p, ) by

ot = p(ye[pi), (23)

where p(yk|p§k)) can be obtained by using obser-
vation model. For example, in case of eq.(9),

plylpt®) =7 (yk - r§’°)) with 7(-) be probability

density function of observation noise wy and rgk) be

71, value of particle pgk).

Resample particles according to

pgk) with prob. a§k)/ Z]Nil agk)
£0) — . . .

i =

T @
PS\I;) with prob. O‘S\Z)/Ejjvil agk)

3.3 Smoothing algorithm

Smoothing is carried out by augmenting the particle
to have smoothing particles of past [ times, and
applying the filtering algorithm to the augmented
particles. The augmented particles are

ng) = {p(_k) S(_k—1|k—1)

T % )

(k—2lk=1) S(k_l|k_1)} (25)

5,

for one-step-ahead prediction, and

P = {1, 611,
sk=2h) S(k—l|k)}‘ (26)

Eiae )

for filtering. Note that fi(k) is identical to sgklk).



3.4 Likelihood
Likelihood of the model to the observation series
(18) can be approximately obtained by

N

N M
1
E 108P(Zlk|Yk—1)2 E log ME Oégk) . (27)
k j=1

k=1 =1

Denoting eq.(27) by (9), ¥ is called "hyperparam-
eter” of the model. In our model, it is a vector that
consists of system noise variances (7,2, 7,2, 7,2, and
7.2), observation noise variance (02), and remain-
ing probability to the same model p,, in Markov
process. They govern the performance of state es-
timation. The optimal value of hyperparameter,
denoted by 19, is determined by maximizing the log-
likelihood [1].

4 Simulation

One-dimensional trajectory generated by simula-
tion is shown in Fig.2(a), where observation noise is
according to N(0,0?) and the variance is small as
0? = 10~%. Acceleration of the trajectory is shown
in Fig.2(b). In these figures, horizontal axis shows
discrete time index k.

By applying Bayesian switching structure model to
the trajectory. Both Gaussian model(ordinary) and
Cauchy model(our proposal) are applied, and we
have estimated position, velocity, acceleration, and
jerk of the target. Number of particles is set to
M = 50,000 in MCF, and system noise variances
1.2, 1,2, 1,2, and 7.2 are determined by grid search
to maximize the likelihood.

Results, i.e. median of the estimated distribution of
acceleration for both models are shown in Fig.3(a)
and (b) by solid line, together with actual one by
dashed line. We can seen that Cauchy model keeps
stable at constant acceleration period without loss
of following property of abrupt changing points.

For objective evaluation of results, errors between
estimation and true for position, velocity, and ac-
celeration are calculated. To avoid dependency of
random number in MCF, we have run 100 times es-
timation with different random number seed. The
average of mean root squares error for 100 runs are
shown in Table.1. In the table, ”win-rate” shows
the rate that proposed model(Cauchy) scores bet-
ter result than Gaussian model in 100 runs.

Results(ratio of appearance) of indicator variable
for both models are shown in Fig.4(a) and (b). In-
dicator value 1(or 1 and 2) are majority for be-
ginning part(i.e., constant position), 3 is major in

Table 1: Performance evaluation
Cauchy Gaussian win-rate
position 5.97 x 1073  6.09 x 1073 75
velocity 5.42 x 1072  5.69 x 1073 87
accel 2.83x 1073 297x 1073 78

the middle of the series, 2 is major at the ending
part(constant velocity). We consider that the re-
sult is reasonable since the most appropriate model
is majority at almost all the period of the series.
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Figure 2: Trajectory of target.

5 Conclusion

We propose the use both of Bayesian switch-
ing structure(nonliner) and heavy-tailed uni-modal
distribution(non-Gaussian) simultaneously in a tar-
get tracking problem. A simulation study of simple
one-dimensional space tracking problem shows im-
provement of tracking performance by the proposed
model compared with Gaussian system noise case.

For the future work, model extension to multi-
dimensional position tracking is considered. By
assuming radar observation of target position, ob-
servation model becomes nonlinear equation that
transform Euclidean coordinate to polar coordi-
nate. Application to real problem such as radar
beam control also remains as a future work.
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Figure 3: Result of acceleration.
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Figure 4: Result of accumulated ratio of models.
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