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Abstract: A new model for tracking of feature points in dynamic image is proposed. The model
is represented in a form of nonlinear state space model having state variables with positions of
feature points, velocity of each object, and object labels that specify the associations between
feature points and objects. We use particle filters with Rao-Blackwellization to estimate the state
of the nonlinear model. By estimating the state, we obtain the tracking of feature points with
velocity of each objects, and the classification of feature points into objects from the estimate of
the associations. 3D reconstruction is also dealt with in this framework with camera projection in
observation equation of the state space model. Experiments using real image for 2D tracking and

3D reconstruction show the efficiency of the model.
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1 Introduction

Structure from motion is one of the most interesting
topic in the field of computer vision since it has wide
applicability e.g., navigation of vehicle, manipulation
of robot, etc. There is a bottom-up approach to this
that uses feature points on the image sequence. This
approach has an advantage that less assumption in the
scene is required. There are several method in this cat-
egory including one of the most famous method called
factorization [17] that uses singular value decompo-
sition(SVD) for measurement matrix to obtain two
matrices corresponding to structure and motion. The
original idea of the factorization has been proposed
under assumptions of single motion and orthogonal
projection, though, later, multiple motion extension
[4] and extension to paraperspective projection [16]
have been proposed.

Although factorization method is effective, it has
one disadvantage for real application due to off-line
property of SVD algorithm. Sequential method of the
factorization has been proposed [15], however, it only
deals with single motion in the scene. For realistic
applications, sequential method for multiple motion
is necessary. There is another approach to structure
from motion [3] that uses state space model and ex-
tended Kalman filter(EKF) for state estimation, how-
ever it is also for single motion only due to the limi-

tation of EKF.

Recently, new filtering techniques for nonlinear non-
Gaussian state space model have been proposed and
are called ”particle filters”. Particle filters use many
number of particles in the state space to approximate
the posterior distribution of the state given a series of
observations. Recent development of computational
performance of computer allows us to use this com-
puter intensive method. Early works of particle fil-

ters are Bootstrap filter[8] and Monte Carlo filter[12].
Later, the ideas have been generalized into sequential
estimation framework in [6] and [13]. Good survey of
this topic is found in [7].

There are many applications of particle filters to dy-
namic image processing e.g., tracking of contour of tar-
get with spline curve[11], tracking of feature points in
robust way with heavy-tailed distribution [9], feature
points tracking and classification into objects in mul-
tiple objects scene [10], and 3D reconstruction from
multiple feature points in multiple objects scene [14].

In this paper, we propose a general class of model
for tracking of feature points in dynamic image with
classification of the feature points into objects in the
scene and recovery of 3D structure and motion. The
model is represented in the form of nonlinear state
space model for tracking feature points with discrete
parameters, which we call ”object label”, and particle
filters are effectively used to estimate the state of the
model. Real image examples for 2D tracking and 3D
reconstruction show the efficiency of the model.

2 Model

2.1 2D tracking and classification

Assume that there are p feature points and ¢ objects
in the scene of dynamic image.

Let X (k) be denoting position of j-th feature point
at discrete time k in a form of row vector. Here we
focus on 2D tracking problem on image plane, so the
position is defined in 2. Time evolution of the posi-
tion is expressed by system equation

X;(k) =X;(k=1) + Sy (k- 1), (1)

where S;(k — 1) denotes velocity of i-th object at time



k — 1, and I;(k) is an index variable taking integer
value in {0,1,2,---,q}. Note that Sg(k) is defined as
zero vector. We refer to the index variable as ”object
label” since it specifies the object in which the feature
point belongs to, except the case that the object label
takes value 0.

Time evolution of velocity of i-th object is repre-
sented by system equation

Si(k) = Si(k — 1) + vi(k), vi(k) ~N(0,Q), (2)

where we refer to v;(k) as system noise, and its co-
variance matrix Q is assumed to be diagonal with all
diagonal elements identical to 72.

Object label is assumed to be according to Markov
process

Pr{I(k) =n|I;(k—1) = m}
p n=m (3)
(1-p)/g n#m

where p is assumed to be high probability.

Observation process is defined so as to measure po-
sition of j-th feature point by

x;(k) = X;(k) + w;(k), w;(k) ~N(O,R), (4)

where x;(k) is the observed position of j-th feature
point, and w;(k) represents observation noise. Covari-
ance matrix of the observation noise, R, is assumed

to be diagonal with all diagonal elements identical to

a2,

Now the problem is to estimate positions of feature
points,

X = (Xy(k), Xa(k), -+, X,p(K))', (5)
velocities of objects,

Sk = (S1(k),Sa(k), -, Sq(k))', (6)
and object labels,

L, = (Li(k), Ia(k), - - Ip(k))', (7)
from series of observed feature points,

X1p = (X1,X0, 5 Xg) s (8)
where
,%p(k))'". (9)

The notation in (8) will apply to other symbols.

Xp = (Xl(k)ax2(k)> e

2.2 3D reconstruction

Assume that the position of j-th feature point is de-
fined in R® and denoted with its elements as

X;(k) = (X;(k), Y;(k), Z;(k)), (10)

where a constraint Z;(k) > 0 is supposed since we
consider a projection model. Observed position of j-
th feature point is denoted with its elements as

x,(k) = (z;(k), y;(k)). (11)

Then the model in the previous subsection for 2D
tracking is extended to 3D reconstruction model from
2D observations by defining observation process as

o = s | i | o

J
with w; (k) = (w;”(k')w]y(k)) ~ N(0,R) .
For the velocity of objects, we employ system equa-
tion in 3D space consisting of the same form of eq.(1)
and (2). Object labels appearing in the equation is
defined the same as in the previous subsection. Then,
the problem here is the same as in the previous sub-
section, i.e., estimate position of feature points in 3D,
X, velocity of objects in 3D, S, and object label, I,
from series of observed feature points in 2D, x;.j.

3 Estimation

To solve the problem of estimation in the previous
section, we formulate a nonlinear state space model
in a class of jump Markov model [5], and use particle
filters for the state estimation.

3.1 State Space Representation

Let us form a state vector consisting of continuous
variables of the model as

Q, = (Xk, Sk) . (]_3)

We can formulate the model in a form of nonlinear
state state representation with jump Markov structure

(14)

e, = F(Ik)(")k_1 + Gvy
Xp H(®y) + wy

where vy, is system noise vector having elements v, (k),
va(k), - -+, vq(k), and wy is observation noise vector
having elements wq(k), wa(k), - -, wy(k).

Although the model, eq.(14), has nonlinear factor
in H(-), extended Kalman filter(EKF) allows us to
estimate the state when all the object labels up to
current time k, denoted by I;.;, are given. That is,
we can have p(®y|x1.x,I1.x) approximately by EKF.
However, the object labels, I;.;, are unknown in the
actual situation, thus we need to estimate the object
labels as well as the state.

To archive the simultaneous estimation of the state
and the object label, we augment the state vector at
time k into Ej being defined by

Ek = (@k, Ik) . (15)



Then it is possible to rewrite the model in a form of
conditional densities,

B ~ f( : |Ek—1 ;7—27p)7
—_ 16
xp ~ h(-]|Eg;0?). (16)

In this formulation, the task of state estimation, which
is called ”filtering”, is to obtain conditional distribu-
tion p(Zg|x1.x) in recursive manner. Note that there
is no closed form solution to the state estimation prob-
lem in this general formulation.

3.2 Particle Filters

Particle filters approximately solve the state estima-
tion problem by using many number of weighted parti-
cles in the state space. The particles are drawn from a
distribution called ”proposal”, and weight is assigned
by ratio of the target distribution and the proposal
distribution for each particle. Then the weighted par-
ticles approximately represent the target distribution
in a manner of importance sampling. Particle filters
modify the set of weighted particles when the new ob-
servation x; becomes availiable, thus the algorithm is
in recursive.

When condition suffices such that the particles are
properly distributed in the state space, modification of
only weights effectively update the distribution. How-
ever, the condition is not always satisfied, so in gen-
eral, the update requires the modification of particles
as well. We denote the set of weighted particles up to

: =0 oY
current time k by {(:.Lk,wk )}171’ where [ denotes
particle number, and M is the number of particles.
The algorithm of particle filters ensure that the set of
weighted particles approximate the target distribution
P(Evk[X1:k)-

The algorithm of particle filters is to obtain the set
of weighted particles at time k by applying update
procedure to the set of weighted particles at time k—1,
and it can be divided into three steps, (1) draw of new
particles, (2)weight update, and (3)re-sampling.

First, draw of new particles are proceeded as

l )
W~ g1EY L xi) (17)

—
e
—

for I = 1,2,---,M. Where conditional distribution
q(+]-,-) is called ”proposal”. We have some choice on
the proposal within property

VEka p(Ekl‘El:k—laxlzk) > 0
= (18)
= ¢(Ei|E1:k-1,X1:2) > 0.
Second, weight update proceeds as below for all [ =
]-7 27 o ’Mi

O &Y 1B, i 1BY)

k W1 — (1) =l
a(EV1EY, 1, x1)

(19)

where weights are non-negative and normalized as sum
to 1, i.e., Z;‘il w,(cl) = 1. It is based on the idea of im-
portance sampling that any set of particles according
proposal ¢(-) can be used to approximate the target
distribution p(-) with weight w(-) = p(:)/q(-), where
property Vz, p(z) > 0 = ¢(z) > 0 holds. Eq.(19)
is derived by using this idea to target distribution
P(E1.k|x1.1) and proposal q(Z1.x|x1.x) with re-use of
past particles 5(11:39—1 to make algorithm be recursive.

Third and finally, re-sampling proceeds as follows;
draw index variables J(I) for | = 1,2,---, M accord-
ing to the weights, i.e., index value J(I) = 7 occurs
with probability w,(;). Then, replace all particles | =
1,2, -+, M according to

=i == (20)

and all weights are set to 1/M.

Re-sampling is not necessarily applied for all times
of filtering procedure. If the particles are properly
distributed before the re-sampling, we can skip the
re-sampling step. There are two major advantages
to skip the re-sampling step; one is to allow parallel
computation since other two steps can be parallelized
while re-sampling step is not, and second is that Monte
Carlo error involved in the draw of random number in
the re-sampling step can be reduced thus variance of
estimate is reduced by skipping re-sampling step.

3.3 Rao-Blackwellization

Further reduction of variance of the estimate is pos-
sible by using idea called ”Rao-Blackwellization” [1].
The idea decompose the target distribution into ana-
lytical part and the rest as

p(Elzk|X1:k) = P(®1:k|11:k, Xl:k)p(II:klxlzk)- (21)
Basically, filtering proceeds using particle filters for
p(I1.k|X1.£) by noting the set of weighted particles

M
{(I(ll_)k,l/,(cl)) }l , and using EKF for analytical part
' =1
p(®1:k|1(1l:)k,x1:k) ~ N(@gl)k, Zgl)k) with given particle
1

Actual procedure consists of (1) draw of new par-
ticles, (2) EKF update, (3) weight update, and (4)
re-sampling, as shown in the followings.

First, draw of new particles applies as
I ~ g(IL %) (22)
Second, EKF update proceeds then obtain
= (1) ) 50 ()
(ek—1|k—1’2k—1|k—1) - (®k|k72k|k) (23)

where we use state space representation of eq.(14)

with particle Iscl) instead of Iy in the equation. Third,



weight update is done with

) P(Igcl) |I§gl)_1 )p(xk |I§cl);xlzk:—1 )

(1)
v« I
g(@PI,_, xar)

(24)

where p(x; |Ig),x1;k_1 ) has already been obtained
at EKF update step. Finally, by applying the re-
sampling step similar to the original particle filters,
the procedure of Rao-Blackwellized particle filter com-
pletes. The difference of re-sampling step of Rao-
Blackwelized version to the original one is that ana-

lytical part, (égl)k’ Egcll)k)’ is also re-sampled together
with ().

3.4 Choice of proposal

It is important to choose a good proposal to make the
particle filters efficient. Although optimal proposal is
known, it is not practical in our model due to huge
computational cost to enumerate all the combinations
of object labels. So instead of using the optimal one,
we propose to use sub-optimal proposal as follows;

Firstly, using a property of conditional indepen-
dence for each feature point, we have

P
gL, xa) = [[a@ I xi).  (25)
j=1

Then, we employ sub-optimal proposal for each fea-
ture points as

a(L (R, x1) ,
o< p(x; (k) [X1:k-1, Igz)k—l’ I;(k)),

where, right hand side is exactly obtained by EKF in
eq.(24), as a part of second term of the numerator.

(26)

Calculation of this exact proposal requires one-step-
ahead prediction of the state in EKF and need to ob-
tain mean vector and covariance matrix of observa-
tion depending on the one-step-ahead prediction. The
computational cost of this calculation is high, so in-
stead of using the exact one, we propose to use rough
approximation of it by replacing its variance to be
fixed and be large. Then what we need to calculate at
the step of drawing from proposal is mean vector of
observation depending only on the mean of one-step-
ahead prediction of the state.

4 Experiment

2D tracking of feature points and 3D reconstruction
from 2D feature points have been conducted.

4.1 2D Tracking

We have used dynamic image shown in figure 1, where
two books are moving parallel to the image plane,

and background does not move relative to the cam-
era. Feature points are extracted in the 1st frame
by corner detector [2], and searched around the posi-
tion in previous frame for subsequent frames by using
block matching based on normalized correlation. Fea-
ture points extracted by this procedure are shown with
rectangles in the images of figure 1.

We have chosen four points for each of two books
and background, and have applied our method to es-
timate object label and trajectory of feature points.
For Rao-Blackwellized particle filter, M = 50k par-
ticles are used with conditions 02 = 1 and 72 = 0.1.
Estimation result of feature points’ trajectory is shown
in figure 2, where estimation result by EKF given the
true object label is also plotted in the figure as ground
truth of this experiment. Estimation result of object
label is shown in table 1.

By looking at the result, close trajectory to the

ground truth is obtained, while estimated object la-
bel is reasonable well.

Figure 1: Image sequence and feature points for 2D
tracking, 1st frame(upper left), 10th frame(upper right),
20th frame(lower left), and 30th frame(lower right).

4.2 3D Reconstruction

Dynamic image used for 3D reconstruction experiment
is shown in figure 3. Two books are moving in the
image, with motion including depth direction. Back-
ground does not move relative to the camera as same
as the 2D experiment. The same procedures have been
applied to the dynamic image, then we have obtained
feature points shown with rectangles in the images.

Four feature points for each of two books and back-
ground are manually selected, then estimation of the

proposed method has been proceeded. Rao-Blackwellized

particle filter has been applied with conditions, M =
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Figure 2: Estimation result of feature points for 2D
tracking (Rb) together with EKF result of known object
label (Ekf) as ground truth.

30k particles, 02 = 1, and 72 = 10~%. Estimation
result of trajectory of feature points is shown in fig-
ure 4. As same as the 2D experiment case, estimation
result by EKF given the true object label is also plot-
ted in the figure as ground truth of this experiment.
Estimation result of object label is shown in table 2.

By looking at the result, estimated trajectory is
close enough to the ground truth, and estimated ob-
ject label is reasonable well.

Figure 3: Image sequence and feature points for 3D
reconstruction, 1st frame(upper left), 10th frame(upper
right), 20th frame(lower left), and 30th frame(lower right).

Table 1: Estimated object label for 2D tracking.
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5 Conclusion

We have proposed a general class of model for tracking
of feature points in dynamic image with classification
of the feature points into objects in the scene as well as
3D structure and motion recovery. The model is rep-
resented in a form of nonlinear state space model for
tracking feature points with discrete parameters called
object label. Particle filters with Rao-Blackwellization
are effectively used to estimate the state of the model,
with sub-optimal proposal using a property of condi-
tional independence of each feature point in the model.
Real image examples for 2D tracking and 3D recon-
struction illustrate the efficiency of the model.

For the future works, there are several topics to in-
vestigate on the model. First, rotation has not been
dealt with in the model, so it is interesting to involve
it in the model. Second, current modeling for 3D re-
construction is limited to planar object parallel to the
image plane in the scene. So more realistic modeling
is necessary for real application. Third, to achieve on-
line performance of the model, parallel computations
such as using MPI or hardware implementation using
e.g. FPGA are required. Application of this model to
navigation of mobile robot is also interesting for the
future work.
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