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Abstract

A new Kansei design method by using decomposed fuzzy model and its inverse problem solution is proposed. Build-
ing exterior design is reported as an application of the method. Input variables of the model are building exterior
attributes, i.e. color of the exterior, window type, and wall material type. Output variables of the model are five
major factors of Kansei adjective pairs obtained by SD technique. The model consists of sub-models corresponding
to each output variable, and the input variables are common among these sub-models. Simplified fuzzy inference is
used for each input variable in order to represent monotonicity of Kansei. The output variables of fuzzy inference
are hierarchically combined two by two by combination unit, which is a nonlinear function based on Kolmogolov-
Gabor polynomial. Inverse problem of each sub-model is solved by firstly calculating noninferior solution set of
combination unit hierarchically, and secondly calculating inverse image of fuzzy inference. By taking intersection
on solution sets of all sub-models for each input variable, we obtain the solution set of Kansei design problem as a

possible change of building exterior attributes.
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1 Introduction

In the recent development of factory automation and
information technology, production of industrial goods
is being changed from mass-production-small-variety to
small-production-wide-variety. Industrial design is go-
ing to be ready to design a product to satisfy each cus-
tomer’s request separately. However, it cannot be said
that customer’s impression to industrial products have
been investigated well, so there remain many problems
to be solved in this field.

From a part of trial to solve these problems, ” Kansei”
is a key word that attracts notice. Kansei is a Japanese
word that means human feeling, for example in indus-
trial design, about products. Among many proposals
to measure the Kansei, semantic differential(SD) tech-
nique is one of the most traditional method [1]. In this
method, Kansei is firstly measured by grades between
many pair of two opposite meaning adjectives, and fac-
tor analysis is applied to extract axes to represent the
Kansei.

In this paper, we propose a new model of customer’s
Kansei evaluation and its inverse problem solution, and
we apply them to a design of building exterior. The in-
put of the model are attributes of design object, and the

output are factors that represent human Kansei. From
many input and output pairs of human reaction mea-
sured by enquiry, parameters of the model are tuned to
approximate the human reaction. By applying inverse
problem solution to this model, we can obtain variation
of design object attributes to satisfy the customer’s re-
quest represented by the change on the factors of hu-
man Kansei.

The model is decomposed into sub-models correspond-
ing to each output variable, and the input is common
among these sub-models. Each sub-model consists two
basic units, fuzzy inference unit and combination unit.
In fuzzy inference unit, simplified fuzzy inference is
applied for each input variable in order to represent
nonmonotonicity of Kansei. The output variables of
fuzzy inference are hierarchically combined two by two
by combination unit. Combination unit is a nonlinear
function based on Kolmogolov-Gabor polynomial.

Inverse problem of each sub-model is solved as follows.
Firstly, calculate noninferior solution set of combina-
tion unit from output to input hierarchically. Then we
obtain solution set on output of fuzzy inference. Sec-
ondly, calculate inverse image of the solution set for
each fuzzy inference. Then we have solution set on
input variable for each sub-model. By taking intersec-



tion on solution sets of all sub-models for each input
variable, we obtain the solution set of Kansei design
problem as a possible change of building attributes.

2 Measurement of Kansei

2.1 CG image

The object where human Kansei is measured is building
exterior. As the object, CG(computer graphics) images
of building exterior are used. Attributes of CG image
are color factors, wall material, and window type. The
color is represented by Munsell color notation system
in which the factors are hue, value, and chroma. Wall
material takes three types, tile, sprayed tile, and steal
panel. We have two window types, separate type and
continuous type. Figurel shows an example of CG im-
age.

2.2 SD technique

To measure Kansei of human, SD(Semantic Differen-
tial) technique is used. Factor analysis to obtain or-
thogonal solution is applied with conditions principal
analysis method to determine communality, rotation by
varimax criterion. The number of factors is determined
by looking cumulative contribution rate.

2.3 Clustering

To adapt individuality of human, we apply clustering
method to human reaction. By summing up factor
scores with respect to all CG images for each person, we
obtain factor score vector for each person. Clustering
is applied to these vector, and we have some groups of

Figure 1: CG image of building exterior

Figure 2: Symbol of nonlinear mapping by fuzzy
inference
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Figure 3: Triangle shape, densely assigned fuzzy
set

person. As the clustering method, we have employed
the fusion technique. Group-average with Euclidean
distance is used as a similarity measure.

3 Model

3.1 Fuzzy Inference

Single input and single output fuzzy inference model
based on simplified fuzzy inference is used to obtain
nonlinear mapping for each input variable. Nonmono-
tonicity of Kansei is accomplished by this mapping.
The symbol of fuzzy inference is shown as in figure 2.

Simplified fuzzy inference is formalized as follows; Let
z € X C R be the input variable of the model, and
s € 8§ C R*(positive real) be the output variable of
nonlinear mapping performed by fuzzy inference. Rule
set of fuzzy inference is denoted as follows;

IF z is label; THEN s =w; , j=1,2,---,R (1)

where label; is the label of fuzzy set defined on input
variable space X', w; > 0 is a singleton defined on out-
put variable space §, and R is the number of rules.

The labels are triangle shape fuzzy sets identified by
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Figure 4: Nonlinear function by fuzzy inference

center position and two edge positions. Let L be the
number of labels. Since we only treat single input
single output case here, L is equal to the number of
rules R. They are assigned densely as shown in fig-
ure 3 by forcing the restriction on center position and
edge position of two adjoining sets to take the same
value. Consequently, the center position parameters
pj, J =1,2,---, L are essential to identify these fuzzy
sets.

Let p; be the membership value of j-th label, we can
obtain the output value of fuzzy inference as follows;

R
s = ij i (2)
ji=1

Thus, nonlinear function obtained by fuzzy inference is
partial linear function as shown in figure 4.

When the input variable takes discrete value, input sup-
port S becomes a set whose members are the possible
value of the input variable. Then, fuzzy set identified
by label; becomes singleton that takes the membership
1 on the certain member of S.

3.2 Hierarchical Combination

The output variables of nonlinear mapping performed
by fuzzy inference are recursively combined two by two
as follows. Let s; and so are arbitrary chosen two out-
put variables of nonlinear mapping for a while. They
are combined by a nonlinear function

— a b
s1,0="kig 510259702 (3)

where k12 > 0 is assumed. Note that s; > 0, s3 > 0
hold since r; > 0 in fuzzy reasoning, and then we have

Figure 5: Symbol of combination unit

s1,2 > 0. We call this function ”combination unit”
since 1t makes compromise combination of variables s;
and s3. The combination unit is based on a nonlinear
function

S10=@15 51 + bia-5s2 + k15189 (4)

which is called ” Kolmogolov-Gabor polynomial”. There
is a research to use this function [2]. Based on the third
term of eq.(4) and taking account into the power of each
input variable separately, we obtain the function eq.(3).
The symbol of combination unit is shown in figure 5.

After all output variables of fuzzy inference are com-
bined, the combined variables are combined once again
by the same unit. For example, if we have the variable

51,2 and s3 4, the output denoted by s1 2 3 4 is calculated
by

_ . a1,2,3,4 . b1,2,3,4
$1,2,34 = k1,2,3,4 51,2 53,4 (5)
This is shown in figure 6. When the number of variable
is odd, combined variable s; 5 and the other variable s3

are combined as follows;

@1,2,3

51,23 = k123512 - s3t12e (6)
This is shown in figure 7. By applying the above equa-
tions, we finally obtain a single output variable. We call
this multiple-input-single-output model ”sub-model”.

3.3 Model structure

To have multiple output model, sub-model(single out-
put models) are separately used for each output vari-
able. The whole model is shown in figure 8. We call
this ”decomposed fuzzy model”. Note that notation of
signal and parameters are changed in order to give the
identical denotation to each sub-model. For example,
parameters contained by combination unit k., a., b. are
changed for sub-model (1) to k(l), a,(l), b(l), Parame-
(1)
I3

the center parameter of i-th rule of j-th input ‘variable

of sub-model (1).

ters in fuzzy inference are also changed that p; ! shows
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Figure 6: Hierarchical combination(even case)
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Figure 7: Hierarchical combination(odd case)

4 Estimation

Given data set, which consist of pairs of input-output
variables

(Xl)dl))(x2)d2)"")(XN;dN)) (7)

where x; denotes i-th input vector of n-dimensional,

and d; denotes 2-th desired output vector of m-dimensional.

Let y(x;) be output vector(m-dimensional) of the model
with input vector x;.

In the proposed model, parameters to be estimated are
pz(-?, wg?, a.(k),b.(k), and k.(k), where ¢ = 1,2,---, L,
j=12---n, k=1,2,---,m, and - denote appropri-
ately defined combination of variables. They are simply
denoted by a vector # here. Error back-propagation
learning algorithm is applied to the proposed model.
The algorithm is formalized as steepest descent method

with respect to the object function

| N
P0) = 5 el (8)
where e; denotes the error vector

e; =y(xi) —d; (9)
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Figure 8: Decomposed fuzzy model

and e;T shows transpose of e;.

In the error back-propagation algorithm, the parameter
vector is changed by

OF

6 =0, —¢c— 1
n+1 n Eagn (0)

where k denotes the iteration, and ¢ is a step size pa-
rameter. Tteratively applying eq.(10) N times, we can
finally obtain the estimated value of parameter 6 de-
noted by 0 =0.

5 Inverse Problem Solution

5.1 Hierarchical Combination

A scheme to solve inverse problem of combination unit
is as follows. By defining

Ug = 5550, up = sk, (11)
we can rewrite eq. (3) as
Sa,b = ka,b *Ug - Up (12)

Let us consider that the output value s, = S, 3 is re-
quested to change to S, 5 +AS, 5. If we fix the variable
ug, = U,, up can be changed as

Sa,b + ASa,b

Uy + AUy = ksl

(13)
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Figure 9: Inverse of Hierarchical Combination

On the other hand, when we fix u; to U, we have

Sa,b + ASa,b

Uy + AU, =
+ kq yUs

(14)

By taking inverse of relationship defined by eq.(11), we
can obtain solution sets S, + AS,; and S + ASy from
U, + AU, and Uy + AUy, respectively.

The process to obtain inverse problem solution sets of
combination unit is illustrated in figure 9. In the fig-
ure, P shows the initial position where u, takes a value
U,, and up takes Up. The output of combination unit
takes value s, ; = S, 3. Note that there are many com-
bination of input variables that take the same output
value S, 3. In the inverse problem, the output of com-
bination unit is requested to take a value S, 3 + ASq 5.
There are many combinations of input variables that
satisfy the request. These combinations are shown as
a curve Sqp + ASyp in figure 9. Here we assume each
input variable takes non-inferior value, i.e. u, > U,
and uy > Up when AS,; is positive. Then we have
an interval on the curve between Q and R in figure 9.
By taking inverse image of this interval, we have the
inverse problem solution sets of combination unit.

By applying this process to combination units from out-
put to input, we finally obtain the solution set on the
output of fuzzy inference.
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Figure 10: Inverse of Fuzzy Inference

5.2 Fuzzy Inference

A scheme to obtain solution set of fuzzy inference by
giving a solution set on its output is described here.
Since the nonlinear function by fuzzy inference is par-
tial linear function, the inverse image of the function is
obtained by taking the union of inverse images of each
part where the function is linear. Note that the inverser
image is not one to one, several intervals may be ob-
tained. It is illustrated in figure 10. When the input of
fuzzy inference takes discrete value, the inverse image
becomes possible combination of input variable.

5.3 Whole Solution

Solution set of inverse problem can be obtained by the
scheme shown above for each sub-model. To obtain a
solution set of whole model is to take intersection of
solution sets for all sub-model. This is illustrated in
figure 11.
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Figure 11: Whole solution



Table 1: Factor analysis result

factor representative contribution
adjective pair rate
Y1 elegant — coarse 23.3%
Ya heavy — light 14.3%
Y3 creative — usual 10.0%
Ya warm — cold 7.8%
Ys static — dynamic 6.7%
total 62.1%
Table 2: Clustering result
group feature number of
Y1 Y2 Ys Y4 Ys member
1 - low - - - 6
2 - low - - high 6
3 - high - - - 7
4 high  high - low - 5
5 high high - low high 5
6 high high - - high 6

6 Experiment

6.1 Measurement of Kansei

174 CG images, which are combination of 29 colors
shown in table 7 in appendix C, three types of wall ma-
terials, and two types of windows, are used. 38 persons
answer their feeling for adjective pairs with 7-stage-
scale. The adjective pairs used here are shown in table
8 in appendix D, where the number of adjective pairs
are 30. Then, the data matrix consists of 174 x 38 cases
with 30 adjective pairs for each case.

Factor analysis is applied to the data by using the soft-
ware ” Statistica” ,StatSoft,Inc.,USA. We have obtained
the five major factors with cumulative contribution rate
62.1% as shown in table 1. Correspondence of the ad-
Jective pairs to these factors are shown in table 8.

Clustering analysis has been applied to the data summed
up the factor values with respect to CG images for each
person. Dendrogram has been obtained by the analy-
sis. Looking the dendrogram and by human subjective
decision, we have obtained six groups as shown in table
2. In the table, features of each group are briefly shown
by ”high” or ”low”, where ”high” means the factor is
given the weight, and ”low” is the opposite.

Table 3: Normalization of input and output vari-

ables
value range normalized
z; hue [0, 360) [0,1)
z5 value [2,9] [0,1]
r3 chroma [0, 14] [0,1]

z4 window type tile 1
sprayed tile 2

steal panel 3

z5 wall material separate type 1
2

continuance type

Table 4: Sum of squared error and correlation

Y1 Y2 Y3 Y4 Ys
sum of squared error
L | 0.5505 0.3630 0.5341 0.3246 0.2880
E | 0.6418 1.0158 0.6537 0.6165 0.3535
correlation
L | 0.6942 0.7316 0.9032 0.8500 0.7076
E | 0.7079 0.7291 0.8379 0.7624 0.6899
”L” : learning, ”E” : evaluation

6.2 Estimation Result

For the 1st group shown in table 2, estimation has
been done as follows. Firstly, the range of input vari-
ables are normalized as shown in table 3. Secondly,
we make average for each the output variable with re-
spect to the group member(6 person in case of the first
group). Then we have 174 input-output pair for the
group. Thirdly, we have split the pairs into two parts,
learning set and evaluation set. The number of data
for each data set is same in this experiment.

For the learning data set, we have applied the learning
process of our model 100,000 times with learning co-
efficient ¢ = 0.001. Evolution of sum of squared error
of output up to 50,000 iteration are shown in figure in
appendix A for learning data set and evaluation data
set, respectively. The final result of sum of squared er-
ror for each data set are shown in table 4. In the table,
correlations between desired value and actual value are
also shown.

The estimated parameters of fuzzy inference and com-
bination unit are shown in table in appendix B. In
these tables, parameters restricted to be positive are
shown by their logarithm.



Table 5: Conditions for inverse problem

Input
original value normalized value
z1 126 0.3500
) 7 0.7143
z3 6 0.4286
x4 | sprayed tile 2
x5 | separate type 1

desired output

d1 d2 d3 d4 d5

0.6667 0.5000 0.4286 0.5714 0.6667
actual output
0N Yo Ys Y4 Ys
0.6482 0.4813 0.4556 0.4990 0.6080
request
Ay, Ay Ays Ay Ays
0.07143  0.1429 - - -

6.3 Inverse Problem Solution

Table 5 shows the conditions for inverse problem. We
have assumed the input color 5GY(126 degree in hue
angle), 7 value, and 6 chroma in Munsell color system.
Wall material is sprayed tile, and window is separate
type. Desired output and the actual output for this
input is shown in the table. At the bottom of the table,
customer’s request is shown. Normalized value for each
variable besides in the table.

Table 6 shows the result of the inverse problem. In
the solution of sub-model(1), z; can take two intervals,
x5 and z3 are single interval, and, z4 and z5 remain
original values. On the other hand, in the solution of
sub-model(2), z; can take only single interval, z5 takes
a interval different from sub-model (1), z3 is the same
interval, z, can take any type, and z5 remains original
values.

By taking the intersection between solutions of sub-
model(1) and sub-model(2), we have obtained the whole
solution as shown in the bottom of table 6. z; re-
sults the original value(0.35) since intervals only over-
lap on the point. z, takes the interval of sub-model(2)
since the interval of sub-model(1) contains that of sub-
model(2). The solution of z3 is obvious since two inter-
vals of sub-model(1) and sub-model(2) are the same. z4
takes 2 since solution of sub-model(1) only takes that,
and x5 is the same value of both sub-models.

Table 6: Inverse problem solution

sub-model(1)
z1 | [0.2247,0.3500] [0.7452,0.7500]
zo | [0.7143,0.9866]
z3 | [0.4286,0.5000]
T4 2
sy 1

sub-model(2)
z1 | [0.3500,0.5000]

zo | [0.7143,0.9200]

z3 | [0.4286,0.5000]

24 1,2,3

sy 1

whole model
z1 | [0.3500,0.3500]

zo | [0.7143,0.9200]

z3 | [0.4286,0.5000]

T4 2

Ty 1

7 Conclusion

We have proposed a new model for Kansei design by us-
ing decomposed fuzzy model and inverse problem ap-
proach. The model has been applied to building ex-
terior design. The input of the model is building at-
tributes vector, and the output is a vector of factors
obtained by SD technique. Simple experiment shows
how 1is the inverse problem solution obtained.

For the future researches, there remain majorly two
works; (1) to determine an unique solution from the
interval, (2) to identify a group where the customer is
in. We will construct a computer aided design(CAD)
system using the proposed model.
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Appendix

A Evolution of sum of squared error
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iteration[k times] iteration[k times]
B Estimated parameters
logw; logws logws logws logws | log k a b
sub-model(1)
zy | 05398 1.1209 1.0029 1.0767 0.5398 51,2 -0.9368 -0.3503 -0.5120
zo | 0.8838 0.1902 0.8646 1.2535 1.7000 $1,2,3 -0.8115  0.1539 -1.6878
zz | 0.1198 0.4726 1.3795 1.4131 1.4292 Sa5 0.2764  0.2922 -0.2127
zq | 0.8975 0.8020 1.4528 s1,2345 | 0.7754 -0.4311 -0.3895
zs | 0.7608 1.0680
sub-model(2)
zy | 0.0607 0.3866 1.3475 1.2379 0.0607 51,2 0.2433 0.7633  0.1503
zo | 07199 0.2827 0.8190 1.2476 1.7353 $1,2,3 -0.6461 -0.0663 1.8332
zz | 0.15643 0.4700 1.2112 1.4487 1.5336 545 0.7690 -0.0182 1.7315
T4 08705 06934 15163 81’273,4:5 —12947 04—043 -04276
zs | 0.7484 1.0507
sub-model(3)
zy | 0.1384 0.5644 1.3519 1.1614 0.1384 51,9 -0.2727  1.0523 -0.9505
xzo | -0.7447 1.4061 1.3029 1.2741 1.1554 51,2,3 -1.0404  0.1483  0.9010
zz | -0.2101 1.0100 1.1672 1.2967 1.5295 545 0.3104 -0.0682 1.8151
zq | 0.8412 0.9808 1.4056 51,2345 | -1.1679 -0.8371  2.0221
zs | 0.8828 0.9714
sub-model(4)
zy | -0.0174 0.2256 1.2763 1.3654 -0.0174 51,2 0.4336 -0.5827 -0.4641
xzo | -0.1295 0.6650 1.4011 1.6074 1.1353 51,2,3 0.6106 -0.2891 -0.2302
zz | -0.2841 0.6996 1.0907 1.5365 1.5292 545 -0.56790 -0.2004 -1.5157
T4 0.7991 0.8661 1.4698 81,273,475 0.6120 -0.5634 -1.2183
zs | 0.8327  1.0057
sub-model(5)
zy | 0.0438 0.7214 1.0928 1.3657 0.0438 51,2 -0.0659 -0.6362 -2.1748
xzy | -0.2013 0.6743 1.1815 1.4906 1.5060 51,2,3 -0.5264 -0.3277 1.2268
zz | -0.0906 0.7176 1.1595 1.3370 1.6209 S4.5 -0.4268 0.0394 -2.3152
zq | 0.8545 0.8608 1.4556 51,2,3,45 | -0.3622  0.6514  2.1533
zs | 0.6956 1.0959




C Color used for CG image D Adjective pairs

Table 7: Colors used for CG image Table 8: Adjective pairs

hue value chroma adjective pair factor
name angle[deg] elegant coarse v
N 0 7 0 classical popular
9 0 familiar unfamiliar
5R 18 5 6 weariless wearily
6 10 graceful rude
8 4 strained casual
5YR 54 3 2 clear gloomy
6 4 stable unstable
7 12 fashionable unfashionable
8 6 orderly disorderly
5Y 90 6 10 satisfied unsatisfied
7 4 heavy light Y2
8 14 cheerful gloomy
9 3 dense dilute
5GY 126 5 2 profound superficial
7 6 casual formal
9 4 creative usual Y3
5G 162 5 10 interesting uninteresting
8 4 frugal deluxe
5BG 198 7 8 warm cold Ya
8 3 natural artificial
5B 234 4 8 static dynamic Ys
6 8 delicate rough
8 4 urban rural none
5PB 270 6 8 calmly incentive
8 3 vivid dull
5P 306 6 8 plain showy
8 4 cool hot
5RP 342 7 2 tasteful tasteless
7 8 sharp blunt




