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Abstract

The aim of this research is to track a maneuver-
ing target, e.g. ship, aircraft, and so on. We use a
state space representation to model this situation.
Dynamics of the target is represented by system
model, firstly in continuous time. Discretized sys-
tem model is actually used. Position of the target
is measured by radar, and this process is described
by nonlinear observation model in polar coordinate.
To follow abrupt changes of the target’s motion due
to sudden operation of acceleration pedal, break,
and steering, we propose a use of heavy-tailed non-
Gaussian distribution for the system noise. Conse-
quently, the model we use here is a nonlinear non-
Gaussian state space model. Particle filter is used
to estimate the target’s state of the nonlinear non-
Gaussian model. Usefulness of the method is shown
by simulation.

Key Words: Target tracking, Particle filter, State
space model, Nonlinear, Non-Gaussian, Heavy-
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1. Introduction

Target tracking is one of the classical prob-
lems using state space representation and filter-
ing/smoothing techniques. In this framework, dy-
namics of the target is represented by a system
model and measurement process is written by ob-
servation model. By assuming all features of these
two models are known, the remaining problem is to
estimate a state of the models. Here, the state is
a vector consists of position, velocity, and acceler-
ation of the target. To solve this problem, Kalman
filter 1s popularly used in case of all formulae are
linear and all noises are Gaussian. When nonlinear
formulae appear in the models, e.g., target position
observed by a radar can be considered, extended
Kalman filter is widely used for the state estima-
tion. In both filters, probability distribution of the
state is estimated by Gaussian, i.e., mean vector
and covariance matrix are estimated.

There 1s a problem in tracking a maneuvering tar-
get that the target might have abrupt change of
its state(acceleration) by sudden operation of ac-
celeration pedal, break, or steering. In the con-

ventional researches, Gaussian distribution is used
for system noise, and this causes blunt estimation
to such abrupt changes of the state. In this pa-
per, we propose a use of uni-modal heavy-tailed
non-Gaussian distribution for system noise to over-
come this problem. Cauchy distribution is typ-
ical as the heavy-tailed distribution. The intro-
duction of heavy-tailed distribution is interpreted
that usual(frequently occur) movement is denoted
by around the uni-mode and the abrupt change of
the target is represented by the heavy-tail with low
probability, which is relatively higher than Gaus-
sian one.

In this situation, the state distribution can be
multi-modal. This means that a use of extended
Kalman filter might fail since the mode of Gaussian
approximation might be placed at low probability
area between modes of multi-modal distribution.
Consequently, we have to use more exact approx-
imation of non-Gaussian distribution for the state
estimation. There are several methods of nonlin-
ear non-Gaussian filter /smoother depending on the
approximation of state distribution such as Gaus-
sian sum[2], numerical representation[5], and using
particles[7]. The use of particles is computation-
ally effective among them, and we have employed
it. This technique is called particle filter, and there
are several researches e.g., bootstrap filter[3], condi-
tional density propagation(CONDENSATION) [4]
from a field of computer vision, and Monte Calro

filter[6].

In the following sections, we will begin to define
a model for maneuvering target tracking accord-
ing to [9]. Continuous time model is firstly defined
and discrete time model is derived from it. Heavy-
tailed distribution, Cauchy distribution here, is in-
troduced into the discrete time model. Next, we
will explain a state estimation method for the non-
linear non-Gaussian model by using particle filter
according to [6]. After that, to show the efficiency
of the proposed method, a simulational experiment
of maneuvering target has been done. In this ex-
periment, the estimation result is compared with
that of the Gaussian model with extended Kalman
filter. At the end of this paper, we will conclude by
making some remarks on our method.



2. Model

Firstly, dynamics of a maneuvering target is de-
scribed by continuous time model with Gaussian
white system noise according to [9]. After that,
the model is discretized with respect to time, and
we use it as a system model. Heavy-tailed non-
Gaussian distribution is introduced to the system
noise of the model.

2.1 Continuos time model

Let the dynamics of a target be written in differen-
tial equation

x(t) = F x(t) + G u(?), (1)
where ¢ € R is continuous time index,

x(1) = [ra(t), ry (1), 5(1), 5y (1), az (1), ay (1) (2)

is a state vector consists of position

v(t) = [ra(t), 7y ()], velocity s(t) = [s4(2), s, ()]",
and acceleration a(t) = [a(t), ay (t)]T ( xT stands
for transpose of x, in this paper ). F is a state
transition matrix

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
F= 0 0 0 0 0 1 ’ (3)
0 0 0 0 —o 0
0 0 0 0 0 —o

G i1s a matrix multiplyed to a system noise vector

T
00 0 0 1 0
G=19 0000 1 (4)

and

u(t) = [us(t), uy ()] (5)
is the system noise vector.

The system model eq.(1) represents that variation
of the target position is determined by velocity,
variation of the velocity is determined by acceler-
ation, and the acceleration is driven by the input
u(t). The use of Gaussian white noise process v(t)
as the input u(¢) when the variation of acceleration
is unknown has been proposed by [9].

2.2 Discretization

Solution of differential equation (1) is

x(t) = A(t — to)x(to) + /t At — 7)Gv(r)dr, (6)

where ¢ is initial time, v(¢) is Gaussian white
noise process with mutually independent compo-
nents, and

At)y=eFt =14+ P14 %FQF + %F3t3+ e (T)
Let At 1s sampling time of discretization and use
discrete time points ¢t = ¢o + kAt for k =0,1,2,---,
then we can use integer k to identify the discrete
time points such as x(f{;) = xj. For these time
points, we have

Xk4+1 = A(At)xk
k41 (
+/ A(tgyr — 7)Gv(T)drT.

tk

8)

By assuming zero-th order hold to system noise, i.e.,
vi = v(7),7 € [tk,tr+1), we have the discretized
formula

Xp41 = A(At)xk + B(At)vk (9)

where

/ t A(r)Gdr

0
= Gt+ 5FGt’ + LF’Gt3 + - -

B(?)

(10)

2.3 System model

In eq.(9), by simply denoting A(At) and B(At) as
A and B respectively, we have the system model

X, = A x$_1 + B vy, (11)
where,
A=
1 0 At 0 a1 0
0 1 0 At 0 a1
0 0 1 0 az 0 (12)
0 0 0 1 0 as ;
0 0 0 0 e oAt 0
0 0 0 0 0 e A
T
| b1 0 by 0 b O
B= [ 0 b 0 b2 0 b3 :| ’ (13)

The entities of eq.’s (12) and (13) are as follows;

_ 1@
bl = E (T — al) y (14)
ap=by = é (At — as), (15)
ay =bs = é (1 —em>A1). (16)



Figure 1: Probability density functions of
Cauchy distribution and Gauss distribution

2.4 Heavy-tailed system noise

For the aim to track the maneuvering target with
abrupt change of its acceleration, we propose a use
of heavy-tailed non-Gaussian distribution

g2 0
vi~C(0,Q), Q. =| 0 ¢, (17)
[

where, C'(0,Q.) stands for heavy-tailed distribu-
tion with central position 0 and dispersion Q..
Since Cauchy distribution is typical one of the
heavy-tailed distribution, so we have employed it
as C. In scalar case, its probability density func-
tion (with central position is 0 and dispersion ¢) is
given by

_ 9
pe(v) = 7(v2 + ¢2) (18)

and is shown in Fig.1. We can seen that Cauchy
distribution has higher probability than Gaussian
distribution for relatively large values of |v].

2.5 Observation model
Assume that the target position is measured by a

radar, and is denoted by observation model

yr = h(xk) +  wg, (19)

where y;, = [yg(k),yg(k)]T is observation vector

consists of bearing ys (k) and range y,(k), and

wy, = [wg(k), wy (k)] (20)

is observation noise vector of (Gaussian, such that

[ ]~ vom, n=[F 4]

Measurement process by radar is denoted by non-

linear formula
tan~! { rz(k) }
ry (k)

ro (k) + 7y ()’

3. State estimation

To estimate the state of non-Gaussian nonlinear
state space model defined above, non-Gaussian non-
linear filtering method is needed. In the filtering
method, non-Gaussian distribution of the state is
approximated by some kind of fashion. There are
several conventional method, e.g., Gaussian sum
approximation[2], numerical representation[5], and
approximation by particle[7].

The use of particle has computational advantage
compared with other, i.e., Gaussian-sum approxi-
mation [2] has combinatorial problem in the compu-
tation, and numerical approximation of distribution
[6] has exponential order of computation. Contrary
to them, computational cost of approximation by
particles is the order of number of particles.

The filter using particles is called Sequential Monte
Carlo method[7].  There are several methods
in SMC, such as bootstrap filter[3], conditional
density propagation (CONDENSATION) [4], and
Monte Carlo filter [6]. We have employed Monte
Carlo filter (MCF) among them, and will be is ex-
plained in the following subsections.

3.1 General state space representation

MCF can estimate the state for general class of
state space representation[6]. We use a subset of
the class of general state space representation de-
fined as follows;

vi~q(;Q) (23)

X = g(Xk-1,Vk),

vi = h(xp, wy), wr ~7r(;R) (24)

In eq.’s (23) and (24), g(x,v) and h(x,w) are non-
linear functions, where we assume the inverse of the
function h(x, w) with respect to w exists (which is

denoted by h='(y,x)), and ¢( - ;Q) and »( - ;R)



are probability density function of appropriate dis-
tribution (which is non-Gaussian distributions, in
general).

This general formula of state space representation
is a wide class of the state space model. The target
tracking model defined at the previous section is in
this class of representation.

3.2 State estimation

Let the observation series be denoted by

YN:{ylayQ)"')yN}' (25)

The problem of state estimation is to calculate con-
ditional distribution of the state given the observa-
tions. It is divided into three types depending on
the time relationship between the state and the ob-
servations. Assume that observations up to cur-
rent time are given, then, estimation of the fu-
ture state i1s called prediction, the current state is
called filtering, and the past state is called smooth-
ing. More detailed, to obtain p(xj|Yx_1) is called
one-step-ahead prediction, p(xy|Yz) is filtering, and
P(Xx Y1) is smoothing with fixed lag L.

3.3 State approximation by particles

MCF uses an approximation of non-Gaussian dis-
tribution by many number of its realizations, which
are called ”particles”. Filtering and smoothing pro-
cedures are done by using these particles instead of
distribution itself. Notation of particles are as fol-
lows. For one-step-ahead prediction,

{ (k) .. (k)} P(xk| Y1) (26)
filtering,
{9,690} ~ piav), (27)

and smoothing(with lag L)

{S(lklk-I-L) ) Sgklk-l-L)) T SS\Z“‘""L)} (28)

~ p(xk[Yetr).

3.4 Filtering procedure

Starting from particles of initial distribution
p(x0]Yp), alternatively applying the following two
procedures according to the order of time index
k=1,2,---, N, we have particles of one-step-ahead
prediction p(x;|Y;—1) and filtering p(x;|Y},) for all
time k=1,2,.--, N.

One-step-ahead prediction:

p() = g(£=1) () (29)
where

(VO VDY~ avi@). (30)
Filtering:

Calculate likelihood of each particle by

o = p(yelpt”) = (h "o, P )i R ) (31)

Resample particles according to

M
p(lk) with prob. agk)/ Z ozg.k)
j=1
£ =1 z z (32)
M
pg‘l,;) with prob. ag\icj)/ Z ozgk)
j=1

3.5 Smoothing

Smoothing is carried out by augmenting the par-
ticle as described below, and applying the filtering
algorithm to the augmented particles. The aug-
mented particle consists of smoothing particles for
the past times and filtering/one-step-ahead predic-
tion particle for the current time. Let us use fixed
lag smoothing with lag L. In this case, the i-th
augmented particle for one-step-ahead prediction is

pit = (5, 41,
Sgk—2|k—1))...’Sgk—L|k—1)}’ (33)

and that for filtering is

P = {2, 1),

(k= 2|k)’ RC)

(34)

Note that fi(k) is equivalent to sz(.klk)

its definition.

according to

Apply the same algorithm of filtering, i.e., alterna-
tively perform the one-step-ahead prediction and
the filtering procedures to particles of ng) and
ng). Then, we obtain particles for the fixed lag(L)
smoothing of time k— L by extracting sl(»k_le) from

eq.(34).



Note that in theoretical point of view, the aug-
mented particles approximate the joint distribution

{ng)} ~p(xk,xk_1,"',xk—L|Yk); (35)
and
{ng)} ~p(xk,xk_l,---,Xk—L|Yk—1)~ (36)

3.6 Likelihood

Likelihood of the model to the observation series
(25) can be approximately obtained by

(9) = Y logp(ys|Yi-1)

k=1

N 1 M 8
=1 j=1

(37)

1R

where, vector ¥ is called "hyperparameter” that
governs the performance of state estimation. The
optimal value of hyperparameter, denoted by 19,
is determined by maximizing the log-likelihood,
eq.(37) [1]. In the target tracking model, the hy-
perparameter consists of covariance matrices of ob-
servation noise and system noise such that

9= {R,Q}. (38)

Let us explain the role of the elements, in scalar case
to simplify. When R is taken to be small and Q to
be large, the observations are reliable and the state
variables change quickly. On the other hand, in the
opposite case, the observations are rather ignored
and the state variables evolve smoothly.

4. Simulation

Synthetic data have been generated by simulating
the maneuvering target(ship) with sampling time
0.01[sec], Trajectory is the same to [8] (which has
single turn), and they are shown in Fig.2 in Carte-
sian coordinate. We assume the use of radar to
observe the target’s position with sampling time
At = 3.75[sec], then the data are actually given
in polar coordinate. We assume in this experiment
that observation noises are very small, such as vari-
ance of bearing, o7, is 1071, and that of range, 03,
is 1072,

The proposed model has been applied to the data.
MCF is used for the state estimation with the num-
ber of particles 100,000. Gaussian model is also

55000 T

> 52250 |~ =

49500 '
-5500 -2750 0

Figure 2: Trajectory

applied to the same data for the comparison. Ex-
tended Kalman filter(EKF) is used for the state es-
timation. For both models, we assume the vari-
ances of observation noise vector are known, and
system noises are determined by log-likelihood with
constraints ¢,? = ¢,> = ¢?. Then we have ¢* val-
ues 107 for Cauchy model and 106 for Gaussian
model.

Estimation(filtering) results of position, velocity,
and acceleration for time interval k = 100 ~ 150 are
shown in Fig.3, Fig.4, and Fig.5, respectively. In
each figure, solid line shows the median(of marginal
distribution) of Cauchy model with MCF, long-
dashed line shows the mean of Gaussian model with
EKF, and short-dashed line shows the true trajec-
tory.

Looking at the estimation result of acceleration
ay(k) and a,(k), we can see that Cauchy-MCF
model can quickly follow the sudden changes. On
the other hand, result of Gaussian-EKF model has
delayed responses to them. It is more obvious in

ag(k) than in a, (k).
5. Conclusion

Dynamics of a maneuvering target has been de-
scribed in system model with random walk of its
acceleration according to [9], and nonlinear obser-
vation model has been used to represent the radar
measurement process. We have proposed a use of
heavy-tailed distribution(Cauchy distribution) in-
stead of Gaussian distribution for the system noise
of the model. Through a simulational experiment
with small measurement noise, the improvement of
tracking performance of a maneuvering target with
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Figure 4: Filtering results of s;(k) and s, (k)

abrupt change of its state(acceleration) has been
shown by comparing with the Gaussian model us-
ing extended Kalman filter.

For the future work, large measurement noise and
application to the real data are considered. How-
ever, there remain several problems to overcome in
such worse SNR case since the acceleration is much
sensitive to the noise in position.
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Figure 5: Filtering results of a,(k) and a,(k)

References

(1]

(2]

H.Akaike,” Likelihood and the Bayes procedure”,
Bayesian Statistics, Valencia, Spain: University
Press, 1980, pp143-166.

D.L.Alspach and H.W.Sorenson,

”Nonlinear Bayesian Estimation Using Gaussian
Sum Approximations”, IEEFE Trans. A.C.,17, No.4,
1972, pp.439-448.

N.J.Gordon, D.J.Salmond and A.F.M.Smith,
”Novel approach to nonlinear/non-Gaussian
Bayesian State Estimation”, IEE Proceedings-F,
140, No.2, 1993, pp.107-113.

M.Isard and A.Blake,

?"CONDENSATION - Conditional Density Propa-
gation for Visual Tracking”, Journal of Computer
Vision, 29, No.1, 1998, pp.5-28.

G.Kitagawa, ”A Nonlinear Smoothing Method for
Time Series Analysis”, Statistica Sinica, 1, No.2,
1991, pp.371-388.

G.Kitagawa, ”Monte Carlo filter and smoother for
non-Gaussian nonlinear state space models”, Jour-
nal of Computational and Graphical Statistics 5,
No.1, 1996, pp.1-25.

J.S.Liu and R.Chen,

”Sequential Monte Carlo methods for dynamic sys-
tems”, Journal of the American Statistical Associ-
ation, 93, 1998, pp.1032-1044.

A.Ohsumi and S.Yasui, ”Tracking of a maneuvering
target considering its kinematic constrains”, Proc.
of world automation congress, 3rd intl.Sympo.on In-
telligent automation and control, 2000.
R.A.Singer, ”Estimating optimal tracking filter per-
formance for manned maneuvering targets”, IEEE
Trans. on Aerospace and electronic systems, AES-
6, No.4, 1970, pp.473-483.



