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Abstract

A new method for adaptation of touch panel user in-
terface is proposed. The method employs a type-based
approach effectively using prior information on user
population which is represented by mixture model. An
advantage of the approach is that we only need to es-
timate weights of types which is numerically far less
expensive than estimating values of all attributes of
the user. State space model is formalized to estimate
the weights of types by supposing smoothness prior
to time evolution of the weights and mixture model
with the time-varying weights. Particle filter is used
to estimate the weights based on observation series of
user operations up to current time. An experiment on
touch panel user interface demonstrates the efficiency
of the proposed method.

Keywords: adaptive user interface, type-based ap-
proach, particle filters, mixture model.

1. Introduction

Recently computer technology has been greatly de-
veloped and it is widely used for various industrial
products including home electronics, mobile commu-
nications, vehicles, etc. These technologies can make
the products more intelligent than before with lower
cost and less capacity and weight, so there are so many
possibilities to produce a new product more useful and
human friendly than before. This is particular interest
to elderly people or handicapped to establish so-called
"barrier free’ society. According to these situations, we
are interested in making human interface more intel-
ligent than the conventional one by using the latest
technologies. Especially, adaptation of the interface
to a specific user is one of the most important topics
to achieve the intelligent human interface.

We propose a type-based approach to the adapta-
tion of human interface. The approach assumes types
on user population which have been extracted through
prior experiment using mixture model. Where, each
component of the mixture model represents the char-
acteristic of each user type. At the adaptation, we
effectively use the user type information such that we
only estimate weights of types which represent belong-

ings of current user to the types. An advantage of this
approach is that it requires less computational cost
than estimating all attributes of the user. For the user
type estimation, we propose a state space model hav-
ing smooth time-evolution of the weights and mixture
model conditioned on the weights. By estimating the
state of the state space model, we obtain the estimate
of the user type in a form of conditional distribution
of the weights given the series of observation up to
current time. Adaptation of user interface is achieved
by combining the optimal interfaces of every type ac-
cording to the estimated weights.

To evaluate our approach, we have conducted a user
adaptation experiment on touch panel interface which
is originated from guidance and control system for in-
telligent wheel chair aimed at near future vehicles for
handicapped person. Function of the interface is es-
sentially to choose a destination of the vehicle. After
operating the interface, it automatically moves toward
the destination. As adaptation factors of the interface,
we focus on size and the number of buttons displayed
on the panel. For example, if the size is too small, it
is difficult to see and to choose it for a person hav-
ing problem on one’s eye or one’s hand. On the other
hand, if the size is too large, the user needs to oper-
ate the panel frequently to complete the selection of
destination since one need to turn pages of the panel
many times. Thus the task of adaptation is to decide
the optimal size and the number of buttons based on
the operation by the user.

2. Method

The proposed method consists of three parts, 1) user
type extraction, 2) user type estimation ), and 3)
adaptation of interface ® 4. We will use mixture
model to extract and represent various types of users.
The mixture model is estimated in the user type ex-
traction part beforehand the user type estimation and
the adaptation of interface. Next, in the user type
estimation part, state space model will be used as a
model for estimating the type of user. Where, estima-
tion result is in a form of weights of types computed
from conditional distribution obtained by state esti-
mation scheme. Finally, in the adaptation of interface



part, the weights will be used to synthesize the optimal
user interface for current user by combining optimal
interfaces of every type according to the weights.

2.1 User type extraction

We use a mixture model to describe and extract the
types of the user population. Each component of the
mixture model is considered as a distribution repre-
senting characteristics of each user type. The mixture
model is defined in observation space which consists of
certain items possible to observe during the operation
of the interface. Let Ep be the observation space.

Possible examples of elements of Ep include quick-
ness, accuracy, and correction rate. To represent char-
acteristics of user population consisting of several user
types (say K types), we use a mixture model over Ep
denoted by its density function

F(x[w; ©,w) = wi fr(x|u; 64), (1)

k=1
with x € FEp and u € Ey, where ©® =
(01,02,---,0K) € Ey is collection of parameter vec-
tors of all components, w = (w1, ws, -+, wgk) € Eg is

vector of weights, and u € Ey denotes a type of the
user interface presented to user. We refer to Ey as ’in-
terface space’. It is possible to represent dependency
of x to external input z over input space Ez, but we
suppress to show this factor in this formulation. We
consider that the weights sum up to 1 and are non-
ne%ative, that is wgy > 0 for all k = 1,2,---, K and
Dt wr =1

Procedure to extract user types based on the mix-
ture model in (1) is as follows. Suppose that the in-
terface space Ey is defined beforehand the user type
extraction. First, decide the observation space Fop
and the input space Ez according to the specific fea-
tures of user population. It will depend on 1)what
items we can measure during operation of the user in-
terface, 2)what items of measurements are dominant
to represent the population characteristics in a form
of mixture model, and 3)what factor should be incor-
porated as the external input to describe dependency
of the observation to the other factors. Second, decide
distribution of all components of the mixture model,
fe(,k =1,2,---, K, as well as the number of com-
ponents K. The decision of components specifies the
parameters space Eg as a result. Third, conduct ex-
periment measuring users’ operations on Ep over var-
ious situations of u € Ey and z € E; for many users
as possible. Then we are ready to estimate the mix-
ture model with data set of the measurements. Fourth
and finally, we estimate the mixture model by any es-
timation method such as EM algorithm V. There are
another choices on the estimation method whatever
it works, e.g., maximum likelihood or moment match-
ing method for each component. Then we obtain the
estimate of parameters ®@¢ and weights wyg.

2.2 User type estimation

We define estimation of user type as a task to esti-
mate the weights of the mixture model in (1) for ’a
specific user’, not for population of users. That is, it
is to obtain belongings of the user for each type. We
refer to the specific user as ”current user”. The task
will be achieved by observing the performance of the
current user and estimating the conditional distribu-
tion of the weights given the observation series up to
current, time. In a simplest situation where user type
is supposed to be fixed (but unknown) weights, this
can be formulated by Bayesian recursive estimation
such that

p(wlx(L: 1)) o )
p(wlx(1: t — 1) F(x(Dlu(t); O, w)

where x(t) and u(t) respectively denote observation
and presented interface at (discrete) time ¢, and
x(1 : t) represents observation series up to time ¢t. We
begin the recursion of eq.(2) with an appropriate ini-
tial distribution of weights parameterized by the esti-
mated weights at the user type extraction part, i.e.,
p(W; Wo).

We further extend the situation above to involve
time-varying weights by letting the weights to have
time index t, i.e., w(t). Here we assume time smooth-
ness for the change of weight parameters in a form of
conditional distribution of Markov process such that

p(w(B)|w(t - 1)). 3)

This distribution represents smooth change of weights.
For example, if all weights are simply real values (i.e.,
not weights with constraints of non-negative and sum
up to 1 property), then the smoothness can be rep-
resented by, for example, Gaussian distribution with
mean w(t—1) and certain covariance matrix. This rep-
resents random walk model for the change of weight
parameters. We can use another kind of distributions
such as uniform, mixture, Cauchy, etc., depending on
the problem we are in hand. However, we need to be
sure to keep the constraints of non-negative and sum
up to 1 property by using, for example, logarithmic
transformation and normalization.

Then, the Bayesian recursion becomes more com-
plicated form than eq.(2) and reads in the form

(2)

p(w(l :t)|x(1:¢)) oEp(w(l tt—1)|x(1:¢-1))
Fx(®)u(t); ©o, w(t))p(w(B)[w(t - 1)),

where  target  distribution is replaced to
p(w(l:t)|x(1:¢)) from p(w|x(l:¢)) of eq.(2),
not only putting time index ¢, but also extending
the index to range 1 : t to have concise notation.
To obtain p(w(t)|x(1 : t)) formally from the result
of eq.(4), we just marginalize p(w(1 : t)|x(1 : t)) to
w(t).

Actual estimation using eq.(4) proceeds with parti-
cle filters 2 due to its non-Gaussian properties. That



is, eq.(4) does not have closed-form solution so we need
to use some approximation method to solve it. Parti-
cle filters approximate the target distribution by many
samples in space of weight Eg, where we will call Eg
as ’state space’ according to a context of state space
modeling. These samples are called ’particles’. Each
particle may have weight to correct discrepancy be-
tween a distribution drawn from and the target dis-
tribution based on the idea of importance sampling.
Details of state estimation by particle filters will be
explained in section 3.

2.3 Adaptation of interface

Although there are many possible ways to accomplish
the adaptation, we have employed a basic idea to com-
bine the estimated weights into optimal interfaces for
each user type. The optimal user interfaces of each
user type are prepared beforehand the adaptation.
There are also many possible ways to combine the
estimated weights; among them, we explain a simple
way as follows.

First, representative value of estimated weight is
calculated from the distribution obtained by eq.(4).
It can be done by taking average, or calculating me-
dian, or MAP (Maximum A Posteriori) of the distribu-
tion p(w(t)|x(1 : t)). Then we have the representative
value w(t). Let u} be the optimal user interface of
k-th component (i.e., type). Then, the user interface
to be presented to the current user will be synthesized
conceptually by taking a weighted sum of the optimal
interfaces

K
ut(t) = Y i (t)u; ()

with notation w(t) = (wy(t), w2 (t),- -, Wk (t)). Note
that eq.(5) is only conceptual weighted sum, so actual
calculation may be more complicated one than repre-
sented in eq.(5). It might proceed in attribute space
of the interface with specific constraints of the space.

3. Estimation

State estimation is a task to obtain conditional dis-
tribution p(w(1 : t)|x(1 : t)) using eq.(4) recursively.
However, there is no closed-form solution to the eq.(4).
So we need to use some approximation method to pro-
ceed the calculation of eq.(4). Particle filters can ap-
proximately solve eq.(4), where the term ’particle fil-
ters’ is a generic one to refer to a class of methods us-
ing particles in state space. It is also called Sequential
Monte Carlo since it proceeds Monte Carlo method se-
quentially according to eq.(4). Here we firstly explain
the idea of importance sampling followed by a review
on sequential Monte Carlo using the fact derived at
the importance sampling explanation.

In our model, particles are represented by a set of

weight instances such that {w(® (1 : t)}?ip with 4 be

an index of instance and M be the number of par-
ticles. We assume that the particles are drawn from
so-called ’proposal distribution’, which is denoted by
g(w(l : t)|x(1:t)). Notice that it is necessary for the
proposal to satisfy a condition g(w|x) > 0 for any w
of p(w|x) > 0. To approximate the target distribution
p(w(l :¢)|x(1 : ¢)) by the set of particles drawn from
the proposal, we need to calculated ’weight’ of par-
ticle to adjust the discrepancy between the proposal
and the target distribution. The weight is calculated
by a formula

a(w(l:1)) x p(w|x)/q(w|x), (6)

ie., ol oc p(w® (1 :t)[x(1:1))/q(w®(1:8)|x(1: t))
is the weight for i-th particle. Then we obtain an
approximated density of the target p(w|x) by

p(wlx) = a(w)q(w[x) (
~ LY aD5(w — wli)) = j(wlx)

where §(x) is Dirac delta function that yields value 1
when it is integrated over a region including 0, yields
value 0 otherwise. To obtain Monte Carlo estimation
of mean (say) of the target distribution, we integrate
eq.(7) multiplied by w, thus we have

E[w(l:¢)x(1:1)]
= [w(l:t)p(w(l:t)|x(1:¢))dw(l:t)
[ ws)p(w(L:t) x(1:t)) dw(1:t)
T [ p(w(rt)x(1:t)) dw(1:t) (8)
[ wat)p(w(it)x(1:t)) dw(L:t)
fﬁ(W(.lrt)IX(lrt))dW(lzt)
=M aPwi (1) =w(:t)
where a§") is normalized version of agi) having sum up
to 1 property.

So far we have reviewed importance sam-
pling method directly on the target distribution
p(w(l :t)|x(1 :¢)). From here we will review on a se-
quential method for the estimation, which is so-called
sequential Monte Carlo. To begin we decompose the
proposal into two parts, i.e., current and past, such
that

gw(l:t)|x(1:¢)) = qg(w(@t)|x(1:¢),w(l:t—1))
xqgw(l:t—1)x(1:¢t-1))

(9)
notice that second term of right hand side in eq.(9)
is glw(l : t = 1D|x(1 : t —1)), not g(w(1l : t —
1)|x(1 : t)). This represents the fact that we se-
quentially conduct the estimation so we had only
used an observation series up to the time when the
particles were drawn. For example, the particle
at time ¢t — 1, denoted as w(¥ (¢t — 1), were drawn
by using observation series up to time ¢t — 1, so
the proposal must be g(w(1:t—1)x(1:¢t—1)), not
gw(l:t—1)|x(1:1)). Eq.(9) recursively applies to
all the past times, i.e., w(t — 1), w(t — 2), and so
on, thus it becomes products of first term in the right
hand side of eq.(9).



Using similar decomposition of the target distribu-
tion p(w(1l : t)|x(1 : t)) and divide eq.(4) by both sides
of eq.(9), we have the weight update formula

of? scafl,

£ (x()[u(t); O, w (0)p(w® (1) w9 (2 — 1))

a(w® ()[x(1: ), w(1:¢ 1))

(10)
The final step of sequential Monte Carlo method is
resampling’. It is necessary to overcome so-called ’de-
generacy of the weight problem’ (a weight shrinkage
problem, i.e., very small number of particles have pos-
itive weights while all other particles have zero weights
and it causes waste of computational burden), but
not necessary for all iteration of sequential estima-
tion. It is better to do the resampling when some
criterion matches in order to avoid involving further
Monte Carlo error. As the criterion, Effective Sample
Size(ESS) is the most popular one, which is inverse of

squared sum of normalized weight such that

M N2
ESS(t)=1/Y (@gﬂ) : (11)

We can see that if all weights are equivalent, i.e., hav-
ing the same value 1/M for all dg’), i=1,2,---,M,
then ESS(t) has value M and it means all particles
are effective. On the other hand, if only one parti-
cle has value 1 weight and all the other have value 0
weights, then ESS(t) becomes 1, meaning that only
one particle is effective. Thus if ESS(¢) is below some
specified threshold, e.g., 2M /3, then we conduct the
resampling step formalized as below.

Reasmpling step proceeds sampling of particles with
replacement according to the probabilities equivalent
to the normalized weights such that

with prob. av

wl)(1:¢) :
with prob. dﬁ”

(1:¢
. W :
wO(1:t) ~ (:2)
wM)(1:¢) with prob. a™
(12)
After that, we reset all the weights to the uniform
value 1/M with letting w(®(1:¢) := w(®(1:¢) .

4. Experiment

Touch panel interface for control and guidance of intel-
ligent wheel chair is the target user interface of pro-
posed method. The intelligent wheel chair is aimed
at a near future vehicle for handicapped person hav-
ing functions of autonomous run to a desired destina-
tion, avoidance of obstacle, etc. We consider a touch
panel interface for the intelligent wheel chair used in-
side a hospital in this experiment. As an instance
of the touch panel interface, we employ a simple in-
terface having destination buttons, next page button,

and cancel button as shown in Figure 1. User will
choose destination button of desired destination on
this interface. There are many destinations so they
cannot be displayed on one panel simultaneously, the
next page button will act as it turn the page to the
next panel. The cancel button plays a role to return
to the first page (panel).

Adaptation on the interface is on size and the num-
ber of buttons. If the size of buttons is large, it is easy
to see the label of button especially for a person hav-
ing weak eye sight. However too large button leads to
too small margin of buttons, and it may cause diffi-
culty to operate the interface especially for a person
having problems on their hand. Additionally, large
size of button leads to the small number of buttons
displayed on one panel. It requires many times turn-
ing of the pages so it is not necessarily good interface
especially for a person only injured ones leg and other
parts are fine. There is also a factor of perception abil-
ity of individuals. Then our method will change the
size and the number of buttons using the type-based
approach. We have already shown several sizes and
numbers of the buttons of the interface available in
the experiment in Figure 1.

=8 =g =
==t

(a) 4 buttone, gize 3.5cm  (b) 4 butbtons, size E0cm (o) 4 buttons, size 6.5om

ﬂ L J = wzANE .l j ﬂ
=== 55
e e =

(d} 6 buttone, gize 3.5crn (o) 6 buttons, size 5.0cm ) 8 buttons, size 3.5cm

Figure 1: Adaptive user interface of touch panel.

4.1 Experimental environment

Before going to experimental result, we should men-
tion about the experimental environment. First of all,
mention about the intelligent wheel chair. Although
we suppose the touch panel interface so as to control
an intelligent wheel chair, the wheel chair is near fu-
ture technology and is still under research and devel-
opment. We mainly focus on the interface of it and it
is not our main purpose to develop the wheel chair in
this paper. According to these situations, we emulate
the function of the intelligent wheel chair by virtual
reality system with two LCD projectors and polarizing
glasses, and sitting down on a fixed wheel chair.
Secondly, we mention about user population. The
best way to do the experiment is to have test subjects
as actual users of the wheel chair, i.e., elderly peo-
ple, handicapped, injured legs, and so on. Obviously



it will involve hard problems for having experiment
with these users at initial stage of research and devel-
opment. To circumvent this difficulty, we emulate the
performance of these users by wearing special equip-
ment. The equipment is a market product aimed at
experiencing the situation of elderly person for non-
elderly person. Figure 2 shows a person who wear
this equipment with all parts. We assume three kinds
of persons; (1)elderly person (having weak eye sight
and may have hand problem), (2)handicapped (having
problems on one’s hand but eye sight be normal), and
(3)injured (only one’s leg) by wearing selected parts
of the equipment as shown in Table 1.

Goggle

Elbow restriction
Weight (arm)
Hand restriction
Glove

Walking stick
Ear plugs

Back protector

. Knee restriction
0. Weight (g

=000 3 O O e DD B

Figure 2: Constraint equipment for having experience
the elderly person’s situation.

Table 1: Conditions for wearing parts of the equip-
ment to emulate three kinds of users.
Kind of user  Parts of equipment(Part No)

- Knee restriction (9)
- Weight(leg) (10)

- Elbow restriction(2)
- Hand restriction(4)
- Glove(5)

- Weight(arm)(3)

- Goggle(1)

- Back protector(8)

- Knee restriction (9)
- Weight(leg) (10)

- Elbow restriction (2)
- Hand restriction (4)
- Glove(5)

- Weight(arm) (3)

- Knee restriction (9)
- Weight(leg) (10)

Elderly
person

Handicapped

Injured

4.2 User type extraction

According to the procedure for extracting the user
types described in section 2.1, we have conducted user
type extraction experiment as follows. Beforehand the
procedure, we have decided that the interface space
Ey is defined as variation of button sizes consist-
ing of threes sizes; large(6.5cm), middle(5.0cm), and
small(3.5cm), and three variations of the number of
buttons consisting of 4, 6, and 8 buttons, as shown in
Figure 1.

First of the procedure, we have decided the obser-
vation space Ep as follows. Before the decision, we
have listed up the items that we can measure during
operation of the user interface; which are button press
time, button press position on the panel, and kind of
buttons to be pressed. Then the observation space Eo
has been decided to consist of three items (1) quick-
ness, (2) accuracy, and (3) correction rate. Quickness
is measured by time interval of button presses where
we only deal with short time interval less than 5 sec-
ond (say). Accuracy is measured by the button press
position to calculate discrepancy between the center
of button and the pressed position with smaller dis-
crepancy higher accuracy. Correction rate is measured
by frequency of cancel button press. Next, we assume
here that there is no external input so the input space
Ez is empty set.

Second, we have decided distribution of all compo-
nents of the mixture model of eq.(1) as follows. It
depends on a fitness of component models to the col-
lected data. So it has been actually done after the
data collection. Among component models consisting
of Gaussian, Beta, and Gamma distributions, the best
fit model having maximum likelihood among them is
Gamma distribution. So we have employed Gamma
distribution as the components fr(),k = 1,2,--- K.
Thus the parameters space Eg is defined as two pa-
rameters of Gamma distribution (actually its K-th
product space) as a result. Next, the number of com-
ponents K, which corresponds to the number of types,
has been decided by following consideration. We as-
sume that there are three major kind of users in a
population in previous subsection, which are (1)el-
derly person, (2)handicapped, and (3)injured. Cor-
responding to these kinds, we assume the number of
components K be three.

Third, we have conducted experiments measuring
users’ operations on Eo over various situations of u €
Ey for 12 test subjects in our laboratory. All test
subjects perform three (all) kinds of users mentioned
above, i.e., elderly person, handicapped, and injured,
by wearing the equipment as shown in Table 1. As
the various situations of u € Ey, we have examined
all (six) the interfaces shown in Figure 1. The task
of test subject is to operate the interface in order to
move the virtual intelligent wheel chair to a designated
destination. 8 tasks were examined by a test subject
for each condition, i.e., for a certain kind of user and



for a certain kind of interfaces. Thus the number of
runs of the experiments is 12[test subjects]x 3[kinds of
users| x6[kinds of interfaces] x8[tasks]=1728.

Fourth and finally, we have estimated the mixture
model as follows. In this situation, we already know
the kind of user for each run of the experiment, so we
can divide the data set into three subsets of user kinds,
elderly person, handicapped, and injured. Then com-
ponents have been estimated each by each using the
corresponding subset of the data. As the estimation of
the components having Gamma distribution, we have
used the moment matching method.

We mention about details of measurement. Mea-
surement items are defined as above, i.e., (1) quick-
ness, (2) accuracy, and (3) correction rate. We can
measure one observation vector consisting of these
three items by one run (i.e. one task) of the exper-
iment. Detailed calculations of each item are as fol-
lows; Quickness @ is averaged time interval of button
presses

N
Q=7 o~ pe) (13
t=2

where p; denotes button press time (with unit ’sec-
ond’) of t-th operation in a task and N is the total
number of operations in the task. Next, accuracy A
is averaged precision of button press position with re-
spect to the center of button calculated by

1 N
A==N"4d
N;t

where d; is button press precision (with unit 'millime-
ter’) of ¢-th operation in a task. Finally, correction
rate C is calculated by averaged time interval of can-
cel button presses

(14)

L

1
C= 71 Z(Ct’ —cy_1)

t'=2

(15)

where ¢ denotes button press time (with unit ’sec-
ond’) of t'-th operation of cancel button press in a
task and L is the total number of operations of cancel
button press in the task.

Plot of measured data for Quickness-Accuracy and
Correction rate-Accuracy are shown in Figure 3, and
Figure 4, respectively. To illustrate the estimation
results, we show density functions of components in
Figure 5 for a case of the interface with 4 buttons of
size 6.5cm, which is shown in Figure 1 (c).

4.3 User type estimation

Using the types extracted at the user type extraction
part (in previous subsection), this part examines the
user type estimation for the current user. A series of
experiment, which is different from the experiments
conducted at the user type extraction part, has been

Aged ©
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fol Injured 0O
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Figure 3: Measured data for user type extraction
(Quickness-Accuracy).

Aged ©
80 + Handicapped  +
& Injured 0O
70
60
z 50
E
< 40 o
30 S @
20
10
0 5 10 15 20 25 30 35

Figure 4: Measured data for user type extraction
(Correction rate-Accuracy).

done as follows. A new user performed the emula-
tion of three kinds of user, i.e. elderly person, hand-
icapped, and injured by wearing the equipment as
shown in Table 1. Then, the user operated the touch
panel by displaying a certain interface among six inter-
faces shown in Figure 1, where all six interfaces have
been examined individually. Task for the user is simi-
lar to one of the user type extraction experiment, i.e.,
moving the virtual intelligent wheel chair to a desig-
nated destination. 8 tasks has been executed for each
kind of user emulation.

In this part, we have used performance measure-
ment directly with quickness, accuracy, and correction
rate instead of their averaged version used in user type
extraction part (equations (13) (14), and (15) ). That
is, button press time interval Q = p; — p;_1, is used
as quickness, button press precision A = d; is used as
accuracy, and time interval of cancel button presses
C = ¢y — cy_1 is used as correction rate.
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Figure 5: Estimated densities of components in user
type extraction.

During the operation of the interface, we have esti-
mated the type of the user by applying the method
shown in section 2.2 with the estimation method
shown in section 3. Conditions for the estimation are
as follows. First, as the state space for the estimatior}é
we have not used the space of weights Es = [0,1]
directly since we need to have special care to do
not violate the constrains for weights (non-negative
and sum up to 1 ). Instead, we have employed a
space of log-transformed weights, denoted by W(t) =
(W1 (t), Wa(t), -+, Wk (t)) , with Wi (t) = logwi(t).
As the smoothness prior for weight vector represented
by a Markov transition model p(w(¢t)|w(t — 1)), we
have used a model derived from equations of transi-
tion and normalization

Wi(t) = Wi(t — 1) + Vi(t),  Vi(t) ~ (0,7%) (16)

30

K
Wi(t) = Wi(t)/ > W;(2) (17)

for Kk =1,2,---) K. Second, the number of particles
used in the particle filters is set to 1000. Third, as the
initial distribution, p(w; W), is set to a distribution
derived from the log-transformed version of the ini-
tial distribution where weights are according to nor-
mal distribution with mean at the uniform weights
and diagonal covariance matrix with all diagonal parts
be 2. Forth, as proposal distribution, we have em-
ployed one-step-ahead prediction p(w(¢)|w(t—1),x(1 :
t — 1)) thus the algorithm is reduced to the simple
particle filter, called Monte Carlo filter (MCF) 7) or
bootstrap filter 3). Its weight values are calculated
simply by likelihood function. Finally, as the resam-
pling, we simply apply the resampling procedure for
all iteration without evaluating the effective sample
size ESS(t).

Results of user type estimation are summarized in
Table 2, where performance of type estimation is eval-
uated with 5 grades, excellent, good, well, confusion,
and bad. Typical results of these grades are shown in
Figure 6, Figure 7, Figure 8, Figure 9, and Figure 10.

4.4 Adaptation of interface

Adaptation scheme explained in section 2.3 has been
implemented to the touch panel interface with the
mechanism of user type estimation in the previous
subsection. To synthesize the optimal interface for
the current user, we will use eq.(5), weighted sum of
optimal interfaces for each type, as follows. First, in
order to have the optimal interfaces of all types, we
have conducted inquiry for all test subjects of user
type extraction experiment. The inquiry is simple,
just choose one interface among all (which are shown
in Figure 1) after conducted full series of task with
emulating a certain kind of user among three (elderly
person, handicapped, and injured). Then we have ob-
tained preference rate over interfaces for each kind of
user as shown in Table 3.

By using the result of Table 3 as performance index
over interfaces for each kind of user (i.e., type), which
are denoted by I(u) with u € Ey = {1,2,---,6}
for k = 1,2,3, we form a total performance index to
choose the optimal user interface

Wy (t) I () (18)

as a realization of conceptual form of eq.(5). Then the
interface that attains the maximum value of eq.(18)
will be displayed on the touch panel.

There is a choice of timing when the interface adapts
to user. Frequent changes of the interface may cause
difficulty to use the interface, so we employ the timing
to change it when one task has been completed or
cancel button were pressed. Then the first time the



Table 2: Summary of estimation results of user type.

Button Number of buttons Kind of
size[em] 4 6 8 user
excellent excellent  confusing | Elderly person
3.5 well confusing  confusing | Handicapped
well confusing  confusing | Injured
bad well — Elderly person
5.0 confusing good — Handicapped
excellent excellent — Injured
good — — Elderly person
6.5 bad — — Handicapped
confusing — — Injured
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Figure 6: Estimation result of user type for 4-buttons
size 3.5[cm] interface by elderly person user, typical
case of ’excellent’ graded.
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Figure 7: Estimation result of user type for 4-buttons
size 6.5[cm] interface by elderly person user, typical
case of ’good’ graded.
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Figure 8: Estimation result of user type for 4-buttons
size 3.5[cm] interface by handicapped user, typical
case of "well’ graded.
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Figure 9: Estimation result of user type for 8-buttons
size 3.5[cm] interface by handicapped user, typical
case of ’confusing’ graded.
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Figure 10: Estimation result of user type for 4-buttons
size 5.0[cm] interface by elderly person user, typical
case of 'bad’ graded.



Table 3: Inquiry result of preference of interfaces.

Interface Kind of user (type)
Inter- | Number | Button
face of Elderly | Handi- | Injured
No. buttons | size[cm] || person | capped

1 4 3.5 0.00 0.00 0.00
2 4 5.0 0.16 0.04 0.16
3 4 6.5 0.40 0.16 0.00
4 6 3.5 0.00 0.00 0.00
5 6 5.0 0.36 0.72 0.56
6 8 3.5 0.08 0.08 0.28

user will see the changed interface is always the same
situation where the first page of the panel is displayed.

Adaptation experiment has been conducted as fol-
lows. Three kinds of users, emulating elderly person,
handicapped, and injured, have operated the adap-
tive user interface of touch panel with tasks moving
the virtual intelligent wheel chair to designated des-
tinations. 15 tasks were performed for each kind of
users. Results of adaptation are as follows. User type
estimation results are shown in Figure 11, Figure 12,
and Figure 13, respectively for elderly person, handi-
capped, and injured. Adaptation result is depicted by
plotting the time evolution of interface number of the
interface displayed to the user. The results are shown
in Figure 14, Figure 15, and Figure 16. Here symbols
show the timing of adaptation caused by completion
of destination selection or cancel button press.

By looking at the results of user type estimation in
adaptation, two of three kinds of users are correctly es-
timated their user type, while one (handicapped user)
is not correct as shown in Figure 12. However looking
more detail at result in Figure 12, we recognize that
at final part of the series it can estimate the type of
user correctly.

Looking at the adaptation results, we can interpret
the results as follows. First, for elderly person user
case, interface no.5 was displayed at the beginning
part, but it became to show interface no.3 instead of
no.5. Note that no.3 interface is the most preferred
interface for elderly person user as shown in Table
3. Second, for handicapped user case, it initially dis-
played no.5 interface stably, then it became to try to
show no.3 interface, and eventually it returned to no.5
interface with changes of user type estimation to cor-
rect one. Here no.5 interface is the most preferred one
for handicapped user as shown in Table 3. Third and
finally, for injured user case, it stably displayed inter-
face no.5, which is the most preferred one as shown in
Table 3.

5. Conclusion
We have proposed a new method for adaptive user in-

terface in general form and applied it to a touch panel
user interface which is used to select the destination of

intelligent wheel chair. The method consists of three
parts, user type extraction, user type estimation, and
adaptation of interface. Mixture model is used at the
user type extraction part. At the user type estimation
part, we have proposed a state space model consisting
of system equation of smoothness prior to time evo-
lution of mixing weights and observation equation of
mixture model with the time varying mixing weight.
State estimation is conducted by particle filters to ob-
tain the user type estimation in a form of conditional
distribution of the time-varying mixing weight given
the series of observation up to current time. At the
adaptation of interface part, the estimated types are
used to synthesize the optimal interface by combining
the optimal interfaces for each user type. Through
experiments of adaptive touch panel interface for in-
telligent wheel chair, we have explored how the pro-
posed method works and obtained result matched to
preference of users.
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Figure 13: Estimated weight with adaptation of inter- Figure 16: Adaptation result of interface by injured
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