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Abstract

An estimation method of time varying peak frequencies of power spectrum is proposed.
The method is based on a new nonlinear model that has peak frequencies of power spec-
trum as time varying parameters. Estimation of time varying peaks is done with the aid
of non-Gaussian filtering method. Time invariant parameters contained in the model is
numerically obtained by maximizing the likelihood function. The order of the model is
determined by AIC (Akaike Information Criterion). The model selection among several
models is also done by AIC. Model extension to have time invariant factors of power spec-
trum has been done. Numerical experiments with artificially generated data are shown

at the end of this paper.
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1 Introduction

A new model that has time varying peaks of power spectrum has been proposed. It has been
named TVPP(Time Varying Peaks of Power spectrum) model. The key idea of the model is
the use of time smoothness of spectrum peaks instead of AR coefficients, which are used in
conventional models e.g. [5, 6]. With the aid of recent researches of non-Gaussian filtering
method [7, 8], the proposed model can be applied to practical problems. The advantages of
proposed model are as follows; 1) smooth evolution of power spectral peaks can directly be
estimated, 2) confidential interval of time varying peak is obtained, and 3) decomposition of

spectrum into time varying peaks and time invariant factors is available.

Spectral analysis is widely used in many part of research field. The aim of spectral analysis
is to know the cyclical features of target object through the spectrum. Peak frequency of power
spectrum is one of the most important factors of cyclical features. The information of peak
frequency can be used for the design of vibrative safety system including the target object. In
time domain analysis of spectrum, statistical models are generally used to estimate the power
spectrum. AR (Auto-Regressive) model is one of the most simple and important models for the
time domain analysis. In AR model, power spectrum can be obtained through estimating AR

coefficients. Smooth shape with several peaks is a feature of spectrum obtained by AR model.

There are many targets that have nonstationary spectrum, for example, seismic wave, vibra-
tion with nonstationary condition, and human voice. Since stationarity is assumed in AR model,
the model is not effective for nonstationary series. In recent researches, statistical models to ob-
tain nonstationary spectrum have been proposed. Locally stationary AR model [10, 4] consists
of stationary AR models applied to each short interval of time series. TVCAR (Time Varying
Coefficient AR) model [5, 6] contains AR coefficients that have time changes. In both models,
nonstationary power spectrum can be obtained through estimating AR coefficients changing

with time.

In these conventional models, the number of parameters are usually greater than the num-
ber of data. Generally, this is ill condition to estimate the parameters. By imposing a time
smoothness to each AR coefficient, estimation of the model becomes possible. Here, peaks of
power spectrum are important information, however, smooth changes of them are not assumed
in the conventional researches. In the conventional models, the smoothness is assumed in only
AR coefficients. The smoothness of AR coefficients merely means smooth changes of power

spectrum for all frequencies.

Since peak frequency of power spectrum is an important feature in nonstationary analysis,
it seems reasonable to define the model with smooth change of peak frequencies rather than AR

coefficients. However, this definition involves nonlinear factor in the model. Because of many
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difficulties of nonlinear models, this kind of model has not been investigated so far. Simple
applications of Kalman filtering algorithm to nonlinear models generally fail. The use of extended

Kalman filtering, which uses first order approximation of nonlinear formula, is still limited.

On the other hand, non-Gaussian filtering methods have been developed recently. The key
idea of non-Gaussian filtering is an approximation of non-Gaussian distributions, for example,
the use of weighted sum of Gaussian distributions [1], numerical approximation called non-
Gaussian nonlinear state space modeling method [7, 8], and the use of sample according to the
distribution [9]. With the aid of non-Gaussian filtering method, the difficulties of nonlinear
model are overcame. Therefore, the proposed model is practical under the current situation of

research field.

In this paper, we propose a new model that has peak frequencies of power spectrum as time
varying parameters. Non-Gaussian nonlinear state space modeling method [7, 8] is applied to
the model estimation. Time invariant parameters included in the model can be determined by
maximizing the likelihood function. Order determination of the model can be done by minimum
AIC (Akaike Information Criterion) procedure [2, 3]. Model selection among several models is
also done by the minimum AIC procedure. An extension of the original model to have time
invariant factor of power spectrum is also proposed. In this extension, we have introduced a
stationary AR model to construct a multiplicative model with original model. Coefficients of the
stationary AR model are estimated in numerical optimization process together with the other

time invariant parameters.

Numerical experiments by using artificially generated data have been done to show the
efficiency of the model. Three data sets have been applied, they are; (1) one time varying peak
of power spectrum, (2) two time varying peaks of power spectrum, and (3) one time varying
peak and one time invariant peak of power spectrum. We have compared the results of our
model with that of TVCAR model. Our model scores better result than TVCAR model, with

respect to AIC, expected log-likelihood, and mean squares error of peak frequency.

2 Time Varying Peaks of Power Spectrum Model(TVPP model)
2.1 Stationary AR model

Let us define an AR(Auto-Regressive) model of order p as follows,

/4
Y= ajy_j+e, t=p+1n~N. (1)

i=1

Where Yy = {y1,%2,...,yn} is a data set, {a;]t = 1,2,...,p} is a set of AR coefficients, and

2

{e:} is a Gaussian white noise with mean 0 and variance 0. The power spectrum, which is
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theoretically obtained from AR model, is as follows,

p(’w) = : PR (2)

p ..
_ o —tjw
1 E aje
j=1

where w € [0, 7] denotes angular frequency.

The characteristic equation of AR model is given by,
p .
1- Za]’B] =0, (3)
i=1

where B is the backward shift operator such that By; = y;—1 .

Assume that the order of AR model p is even, i.e. p = 2m, and all solutions of characteristic
equation are complex. Conjugate pairs of solution are denoted by rre~" and rpei’x, for k =

1,2,...,m.

Stationarity condition of AR model is that all solutions are located at the outside of unit

circle,i.e., rp > 1 for k=1,2,...,m.

We can rewrite the characteristic equation (3) by using its solutions as follows,

1T (1— ree™ BY(1 — rrei® B) = 0. (4)
k=1

Let wy, be a peak frequency of power spectrum (2), we can easily see that the denominator

of (2) is locally minimized at the point of wy.

For all £ = 1,2,...,m, by assuming r; ~ 1 under the stationarity condition r; > 1, 85 can

be an approximation of peak frequency wy of power spectrum (2).

We will use this approximation to derive a new model to estimate the time varying peak

frequencies of nonstationary power spectrum in the following section.

2.2 Original Model

We propose a new model to estimate time varying peak frequencies of power spectrum (TVPP

model) as follows,

O; =0;_; +wy, (5)

P
w=3 aP(@,R)yj+er, p=2m. (6)

j=1
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Where, ®; is a vector of peak frequencies of time ¢ such that
©; = [01(1),82(1), - ... 0 ()], (7)
and R is a vector as follows,
R =[r,72,....7m]". (8)

w; is a random vector that specifies the smoothness of peak frequencies ®;, and it is denoted

as follows,

we = [wi(t), wa(t),..., wa ()], we~ N(0,Q), (9)
where () is the covariance matrix such that

Q:diag(rf,rg,...,rﬁb). (10)

We can see in (6) that AR coefficients are parametrized by ®; and R. The relationship

between AR coefficients and these parameters is derived by solving the following equations,

p
1-— ZajB] =0
=1

i (1 — ree®™® D BY(1 — rpe= O B) = 0.
k=1

(11)

(

The examples of coefficients ajp)(-, -), in case of p = 2 and 4 are shown as follows.

In case of p = 2:

a(z)(®t,R) = 2rcosb;

1
0132)(6“ R) = —7‘2 (12)
where, we simply denote 6,(¢) and r; by 6; and 7.
In case of p = 4:
“54)(®t7 R) = 2 (71 cosB1(t) + ra cosB2(t))
alV(@,R) = —12 — 12— dryrycos b (1) cosby(1)
agl)(@ta R) = 2rre(racosby(t) 4 r1cosby(t)) (13)
‘%(14) (04,R) = —rirl

Since the stationarity condition of AR model is required, it should be kept r;, > 1 for
k= 1,2,...,m. When r; ~ 1 is hold, 6,(¢) is approximately a peak frequency of power

spectrum.
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Our model still has the other parameters which are time invariant. They are denoted by

vector form as follows,

2 2 2 2 T
X = |0 T Tg ey T T1, T2y ey T | (14)

3 Estimation Method

Since nonlinear equation is involved in the proposed model, non-Gaussian filtering is required
for the model estimation. There are several methods for non-Gaussian filtering according to
the approximation method of non-Gaussian distributions [1],[7, 8],[9]. In this paper, we have
employed non-Gaussian nonlinear state space modeling method [7, 8], and it is summarized in
this section. The key idea of the method [7, 8] is an approximation of non-Gaussian distributions
by step-wise function or partially linear function. For the convenience, we simply explain in case
of the dimension of ®; is 1 and use the approximation by step-wise function in the following text.
The complete algorithm involving estimation and order determination is written in Appendix

A by Pascal(computer language) like style.

3.1 Numerical Approximation

Non-Gaussian distributions are approximated by step-wise function in the non-Gaussian method
[7, 8]. Since the step-wise function can be identified by certain number of numerical points, the
non-Gaussian distributions can be denoted by numerical points. Using these numerical points,

estimation process that involves integrations can be done numerically.

In the estimation process, three kind of estimations appear depending on the time of given
series. One step ahead prediction, denoted by p(®;41]Y}), is the future estimation by using the
data up to current time ¢. Filtering, denoted by p(®;]Y;), is the current estimation by using the
data up to current time ¢. Smoothing, denoted by p(®¢|Yx), is the estimation of past time ¢ by

using all available data up to current time N.

These distributions are numerically approximated as follows. Since our attention is paid to
frequency domain such that [0, 7], it is enough to make numerical approximation on this domain.

Divide [0, 7] into M adjoint intervals, and a set of boundary points are denoted by
b = {bo,b1,bs,...,b0s}, (15)

where b;_y < b; forall e =1,2,... . M.

Filtering, one-step-ahead prediction, and smoothing distributions are represented by using

numerical points corresponding to the above intervals. The notations of them are as follows;
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Filtering distribution p(6;|Y;) is denoted by

fo= AW, fa(t), -, fau(®)}, (16)

one-step-ahead prediction distribution p(6;|Y;—1) is denoted by

pe = {p(1), p2(1),- -, o (D)}, (17)

and smoothing distribution p(6;|Yx) is denoted by

st = {s1(t),52(1), ..., sar()}". (18)

The distribution of w; is also represented by numerical points for the convenience of calcula-

tion. Since wy = ; — 6;_1, the values of distribution corresponding to b; —b; for : = 1,2,..., M
and j = 1,2,..., M are stored as the numerical points as follows,
g={¢ili=1,2,....M, j=1,2,... ., M}. (19)

3.2 Prediction and Filtering

Starting from initial distribution p(ép), by applying prediction and filtering process alternatively,
we can obtain the prediction and the filtering distributions for ¢ = 1,2,..., N. Since the process

is going toward the time direction, this can be called forward phase of the estimation process.

Fxact calculation of one-step-ahead prediction distribution is derived as follows,

PONYi1) = [ DB -1 )p(O1r[Yier )i, (20)
The numerical implementation of one-step-ahead prediction becomes as follows,
M-1
pi(t) = Y (bjx1 —bj) - fi(t—1)- g (21)
=0

Exact calculation of filtering distribution is obtained from prediction distribution as follows,

P(0t|Yt—1)P(yt|9t,5@—1)

0:|Y:) = , 22

p(0:fYo) p(yeYi-1) (22)
where p(y:|Y;—1) is calculated by integrating the numerator:

PlYiet) = [ pOIYie)p(01l6r, Vi1 )bl (23)

The numerical implementation of filtering becomes as follows,

M-1

fi(t) = f1;(t)/ Z (bjpr —bj) - f15(t = 1), (24)
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fit)y=pi(t) - r (yt - Z a;(b;) - yt—j) : (25)

Where r(-) is the pdf for ¢;. Although it is assumed in our model that r(-) is a Gaussian

distribution, it is not necessary in general.

3.3 Parameter Estimation and Order Determination

The time invariant parameters involved in the proposed model are estimated by maximizing
the likelihood function. The log-likelihood function is used for the maximization instead of

likelihood function, and it is shown as follows,

N
l(x) =) log p(y:|Yi-1), (26)

t=1
where (23) appears, therefore, the value of log-likelihood function is obtained through the forward
phase. By using numerical optimization method such as quasi-Newton method, the optimal

vector of parameters, denoted by X, can be obtained.

Minimum AIC [2, 3] procedure is used to determine the optimal order of the model and to

select the optimal model. AIC for our model is defined as follows,
AIC = =2l(%)+ 2 x (p+ 1). (27)

In the minimum AIC procedure, the order that minimizes AIC is employed as the optimal order,

and the model that has minimum value of AIC is selected as the optimal model.

3.4 Smoothing

After the order determination has been finished, smoothing process will be done. Since the
smoothing process is going toward the opposite direction of time, this can be called backward
phase of the estimation. Estimated result by backward phase is most reliable since all data are
used for the estimation. There are several methods for smoothing, such as fixed point, fixed
interval, and fixed lag methods. In this paper, we have employed fixed interval method as the

smoothing procedure.

The exact distribution of smoothing of time ¢ is calculated from smoothing and prediction

distributions of time ¢ 4+ 1, and filtering distribution of time ¢ as follows,

P(0t+1|YN)P(9t+1 |0t)
P(0t+1|Yt)

pOY) =0V [ by, (28)
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The numerical implementation of smoothing becomes as follows,

M-1

si(t) = fi(t) Y

J=0

si(t+1)-q; 2
W(”Hl —bj)”. (29)

4 Model Extension

We have employed non-Gaussian nonlinear state space modeling method [7, 8] for the estimation
of the model. Since this method include numerical integration, dimension of state vector is
limited by the computational cost. Practically, it is at most 4 by current computational resources.

In our model, dimension of state vector corresponds to the number of peaks denoted by m.

In our model, there is a relationship between the number of spectral peaks m and the
AR order p, denoted by p = 2m. Thus the AR order is limited by the computational reason
mentioned above. This limitation is not suit for actual applications since low order might

produces poor fitness and will estimate meaningless result.

To overcome this problem, we have extended the original model by introducing a stationary
AR model of order n. Since the total order becomes p = 2m + n by this extension, we have no

limitation of AR order caused by computational cost.

The extended model is defined as follows. We construct multiplicative model between original

TVPP model and the stationary AR model as follows,

(1= rpe O B)(1 — rpe I B) x (1 - ; ¢;B) = 0. (30)

Where, coefficients ¢; of stationary AR part are estimated by numerical optimization based
on likelihood function. Then the vector of time invariant parameters (14) is modified by this

extension as follows,

2 2 2 2 T
X = |0, T Ty ey Ty T13T2s e oo s Ty €1, €25« ooy Cp | (31)

Note that the number of parameters is not changed to the original model with respect to the

model order p. Thus the formula of AIC is the same of original model’s (27).

Through the estimation of extended model, we obtain time varying peaks of power spectrum
from ©y, and time invariant factor of power spectrum from ¢;,(j = 1,2,...,n). This is an
advantageous feature of extended model since the spectral features of data are decomposed into

time varying peaks and time invariant factor by one pass estimation.
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5 Numerical Experiment

In order to show the efficiency of TVPP model, numerical experiments have been shown in this
section. TVPP model has been applied to artificial data that have been generated by changing
the peak frequencies of power spectrum. TVCAR model is also applied to the data, and the
results of both models are compared together with respect to AIC, expected log-likelihood, and

mean squares error of peak frequency.

5.1 Artificial Data

Three data sets, named data I, data I, and data III, are generated by following processes.

Process I (for data I):

0y = 0t 1+ 60

Yy = Za 01&7 T)Yt—j + €t (32)
(660 =0.01,r = 1.2)
Process II (for data II):
0, = ®t 1400
Yy = Za (O R)y—j + & (33)
(®; = [01(1),82(1)]", 6@ = [0.004,—0.004]", R = [1.2,1.2]7)
Process III (for data III):
0, = 9t 1+ 60
v, = Za (Or,7)vi—; + €4
i=1 (34)
2
Yy = chyt—j + vy,
J=1

(60 = 0.004, 7 = 1.2, ¢; = 0.0, c3 = —0.6944)

For each process, pseudo random numbers are used as the values of ¢; ~ N(0,0%) with

o = 3.0. The number of data is 300 in each data set.

5.2 Model Fitting and Estimation Result

Extended version of TVPP model and TVCAR model are applied to the data sets. The value
of AIC obtained for several order of each model are shown in Table 1 and Table 2 for data I,
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Table 3 and Table 4 for data II, and Table 5 and Table 6 for data III. Since true processes
are known in the experiments, the values of expected log-likelihood can be obtained and shown
in these tables. The value of AIC and expected log-likelihood of optimal oreder are underlined
in each table. The optimal order by minimum AIC procedure is agreeed with the order of true
process, except data III of TVPP model. In this case, expected log-likelihood scores the same

order as true process.

Estimation results are shown as follows. In TVPP model, peak frequencies of power spectrum
can directly be obtained. Estimated peaks are shown in Figure 1 for data I, Figure 2 for data
IT, and Figure 3 for data III. Since distributions of peak frequency are obtained by TVPP
model, confidential interval of peak frequency can be displayed. In each figure, 50%(median),
68%, 95%, and 99% points are plotted by solid lines, and dashed lines show the true peaks. For
data III, time invariant factor of power spectrum has been estimated, and it is shown in Figure

4.

In TVCAR model, time varying power spectrum is firstly obtained from estimated AR
coefficient. Secondly, from the estimated spectrum, peak frequencies of power spectrum are
numerically obtained. They are plotted in Figure 5 for data I, Figure 6 for data II, and
Figure 7 for data III. In these figures, solid lines show the estimated peaks, and dashed lines
show the true peaks. Since time smoothness of peaks is not assumed in TVCAR model, peaks

between adjoint time are discontinuously shown in each figure.

5.8 Discussion

Figure 1, Figure 2, and Figure 3 show the estimated results by TVPP model for each data
set. From the figures, smooth evolution of spectral peaks are easily recognized. Note that
TVCAR model also estimates the evolution of spectral peaks as shown in Figure 5, Figure 6,
and Figure 7, however, they contain several abrupt changes of frequency. Moreover, by looking
at the result of data IIl shown in Figure 7, stable estimate of time invariant peak of power

spectrum cannot be obtained by TVCAR model.

As shown in Figure 1, Figure 2, and Figure 3, confidential interval of time varying peak
can be obtained by TVPP model. For all data sets, we can see that true peaks are covered by

confidential interval of 95% in the most part of series.

Data III contains time invariant peak of power spectrum at angular frequency 7 /2. We can
see that the decomposition of spectrum into time varying peaks of Figure 3 and time invariant

factor of Figure 4 is available in TVPP model.

Comparison of estimation results between TVPP model and TVCAR model has been done

based on AIC, expected log-likelihood, and mean squares error of peak frequencies. The values
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of these criteria are summarized in Table 7. By looking at the table, all criteria of all data sets

show that TVPP model is much better than TVCAR model.

We can see that the order determination by AIC of TVPP model in case of data I and data
IT work correctly, and it does not in case of data III. All spectral peaks are varying with time
in data I and data II, but not all in data III. Therefore we can say that order determination by
AIC for TVPP model correctly works while all spectral peaks are varying with time. In data
ITI, AIC still has bias compared with expected log-likelihood.

6 Concluding Remarks

A new model to estimate time varying peak frequencies of power spectrum has been proposed,
and has been named TVPP model. The model contains nonlinear factor because of the definition
of time varying peaks of power spectrum. In TVPP model, estimation method with the aid of
non-Gaussian filtering method, and order determination and model selection based on AIC have

been shown. The model has been extended to have time invariant factors of power spectrum.

The advantages of TVPP model are summarized as follows; 1) smooth evolution of power
spectral peaks can directly be estimated, 2) confidential interval of time varying peak is obtained,
and 3) decomposition of spectrum into time varying peaks and time invariant factors is available.
These advantages are confirmed through numerical experiments. Also it is confirmed through
the experiments that TVPP model can provide better result than TVCAR model with respect

to AIC, expected log-likelihood, and mean squares error of peak frequency.

Future works of TVPP model are mentioned. There are many targets that have nonstation-
ary spectrum such as seismic wave, vibration with nonstationary condition, and human voice.
These are interesting applications of TVPP model. The advantages of TVPP model will be
used in these applications as follows; smooth estimation of power spectral peaks will serve a new
point of view in each application, confidential interval estimated by TVPP model will play an
important role for decision making on a design or feature recognition of target, and decompo-
sition of spectrum will be available to extract meaningful information from noisely features in

actual applications.
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A Algorithm

program Algorithm

function ForwardPhase(m,x)

begin
t:=p+1;
I(x) :=0;

initialize prediction for ¢ p(@;|Y;_1) := p(Op41);
while ¢ < N begin

filtering for ¢ p(©@+|Y3);

l(x) := I(x) + log p(y+|Y:-1);

if(t < N) prediction for t + 1 p(@441|Y);

t:=t+4+1;
end;
return [(x);

end;

function Optimization(m)

begin
foreach x = {x;,x3,...,%,} begin
l(x) := ForwardPhase(m,x);
end;

let x* such as x* = max[(x) ;
b3
return x*;
end;

function OrderDetermination()
begin
for m=1,2,... Mpmar begin
I*(m) := Optimization(m);
AIC(m) := 2I*(m) — 2(2m + 1);
end;
let m* such as m* = n71_’ilnAIC(m);
return m*;
end;

procedure BackwardPhase(m)
begin
t:=N;
initialize smoothing for ¢ p(©;|Y;) = p(On|Yn);
while ¢ > p begin
smoothing for t — 1 p(©;_1|Yw);

t:=t—1;
end;
end;
begin
m* := OrderDetermination();

BackwardPhase( m* );

end;

13
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Table 1: AIC and expected log-likelihood for simulation data I by TVPP model

(m=1) (m=2)
n| AIC  E{logf(Y)} AIC  E{logf(¥)}

0 | 134943  (-672.27) 136143  (-679.29)
1| 134997  (-67251)  1363.07  (-678.89)
2 | 1351.89  (-672.57)  1367.87  (-678.37)
3| 135340  (-673.05)  1368.27  (-680.09)
4] 135334  (-674.12)  1366.31  (-679.34)
5| 135498  (-674.11)  1368.35  (-679.49)

Table 2: AIC and expected log-likelihood for simulation data I by TVCAR model

p | AIC  Ef{log f(Y)}
2 | 136185  (-676.25)
3 | 137026  (-684.54)
4 138316  (-688.16)
5 | 139753 (-691.38)
6 | 1406.15  (-696.24)
7 | 141541 (-701.74)
8 | 142260  (-708.05)
9 | 143139  (-711.82)
10 | 144050  (-723.22)
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Table 3: AIC and expected log-likelihood for simulation data IT by TVPP model
(m=1) (m=2)
n| AIC E{logf(Y)} AIC  E{logf(Y)}

0 | 1487.00  (-741.90)  1362.28  (-671.81)
1| 1473.94  (-738.74)  1362.97  (-67L57)
2 | 142529  (-716.08)  1365.77  (-673.53)
3| 141049  (-709.30) 136721  (-672.78)
4] 1412.08  (-708.62)  1368.94  (-673.60)
5| 140979  (-707.78)  1370.96  (-673.65)

Table 4: AIC and expected log-likelihood for simulation data IT by TVCAR model

p | AIC  Ef{log f(Y)}
2 | 142019  (-703.57)
3 | 142792 (-704.20)
4 |1381.90  (-677.68)
5 | 1387.04  (-683.75)
6 | 1391.93  (-686.12)
7 1139825  (-688.53)
8 | 140243  (-693.12)
9 | 141262  (-694.90)
10 | 1417.64  (-695.56)
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Table 5: AIC and expected log-likelihood for simulation data III by TVPP model
n (m=1) (m=2)
AIC E {log f(Y)} AIC E{log f(Y)}

0| 143148  (-709.56)  1345.74  (-677.31)
1| 141960  (-706.94) 134747  (-677.13)
2 | 1344.14  (-669.12) 134533  (-703.32)
3| 1346.05  (-669.20) 134577  (-682.11)
4| 134068  (-674.92)  1347.24  (-679.53)
5 (-

1341.59 674.29)  1349.14  (-678.98)

Table 6: AIC and expected log-likelihood for simulation data III by TVCAR model

p | AIC  Ef{log f(Y)}
2 | 141865  (-707.84)
3 | 140423  (-700.63)
4 |1363.96  (-677.86)
5 | 1367.54  (-678.31)
6 | 1373.46  (-681.28)
7 1138209  (-682.59)
8 | 138872  (-685.26)
9 | 139051  (-688.19)
10 | 139475  (-691.67)
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Table 7: Comparison between TVPP model and TVCAR model

TVPP model TVCAR model
order m=1n=20 p=2
AIC 1349.43 1361.85
Datal  E{log f(Y)} -672.27 -679.29
MSE 0.01007 0.02816
order m=2n=>0 p=4
AlIC 1362.28 1381.90
Data IT  E {log f(Y)} -671.57 -677.68
MSE 0.01393 0.13580
order m=1n=414 p=4
AlIC 1340.68 1363.96
Data IIT  E {log f(Y)} -669.12 -677.86
MSE 0.007867 0.02826
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Figure 1: Estimated peak frequency of power spectrum by TVPP model for data I
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Figure 2: Estimated peak frequencies of power spectrum by TVPP model for data II
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Figure 3: Estimated peak frequency of power spectrum by TVPP model for data 111
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Figure 4: Time invariant power spectrum estimated by TVPP model for data III
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Figure 5: Estimated peak frequency by TVCAR model for data I
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Figure 6: Estimated peak frequencies by TVCAR model for data II
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Figure 7: Estimated peak frequencies by TVCAR model for data 11



