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A new model based on time-varying peak frequencies of power spectrum
(TVPP model) has been proposed. The model contains peak frequen-
cies of power spectrum as time-varying parameters and time invariant
factor of power spectrum. Nonlinear nonstationary state space model-
ing proposed by G.Kitagawa is used to estimate time-varying peaks, and
quasi-Newton method with BFGS modification formula is used to esti-
mate time invariant parameters. Application result to seismic wave data
has been reported. Comparison to time-varying coefficient AR model

(TVAR mode) has also been reported.

1 Introduction

Spectral analysis is widely used in many field of researches and statistical models for time series
analysis can be used to obtain the estimate of spectrum. Peak frequency of power spectrum
is one of the most important feature in the analysis using power spectrum. Although there
are many conventional methods to obtain stationary spectrum and several methods to obtain
nonstationary spectrum, there is little method directly obtaining such important feature of
spectrum.

We propose a new model based on time-varying peak frequencies of power spectrum (TVPP
model). The most advantage of this model is the direct estimation of peak frequencies of power
spectrum. The basic idea of proposed model, named original model, consists of system equation
and observation equation. System equation denotes the smoothness of time changes of peak
frequencies, and observation equation consists of time-varying coefficient AR model. Original
model has been extended to improve fitness to data by making multiplicative model with
stationary AR model.

Since the AR coefficients are parametrized by peak frequencies nonlinearly, estimation
method conventionally used for linear models cannot be used. There is an estimation method
for nonlinear models, nonlinear nonstationary state space modeling proposed by G.Kitagawa|3],
and we have used this method for the estimation of time-varying peaks. The model also con-
tains time invariant parameters, and they are estimated by quasi-Newton method based on
likelihood function.

An application to seismic wave data has been reported. In the application, not only TVPP
model has been examined, but also time-varying coefficient AR model(TVAR mode)[2] has
been applied as the counter example. Application results of both models are compared and
discussion about the comparison follows.



2 Time-Varying Peak of Power spectrum model(TVPP
model)

We consider time series data, which have stationary mean, denoted by a vector

T
Y= [ylny,---;yN] )

where xT denotes a transpose of vector x. Let vector of time-varying peak frequencies of power
spectrum at time t be

@, = [61(1),02(1),...,0, (D],

let us assume parameters related to power of each peak are time invariant and denoted by

R = [7"1,?"2, s arm]T'

The original idea of a model with time-varying peak frequencies of power spectrum is denoted

by
O, = O, +w,
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where, system noise
Wy = [wy (1), wy(1), ... wn, ()]

is a random vector accroding to normal distribution of 0 mean and @) covariance matrix
Q) = diag (7'12,7'22, . ,7'31) .

AR coefficient, a;(®;,R), is derived by solving the following equations,

2m
1-3a;(®,R)B/ = TI (1 — rge ™I B)(1 — rpe™ O B). (2)
k=1

i=1

3 Estimation Method

Estimation of the model is done by nonlinear nonstationary state space modeling method
proposed by G.Kitagawa [3]. The estimation method can be divided into two phases, forward
phase by applying filtering and prediction alternatively, and backward phase of smoothing. The
value of likelihood which is used in numerical optimization is obtained in forward phase. After
determined the optimal values of time invariant parameters, backward phase is done and we
obtain smoothing estimation of state.

The main idea of the estimation method is a numerical representation of non-Gaussian
distribution. The domain of state vector is divided into many short intervals, and the values of
density function of each interval are stored. Numerical integration is done in estimation process.
Since the number of intervals gains exponentially with the dimension of the state vector, the
dimension of state vector cannot be taken higher.



Time constant parameters,
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are obtained by numerical optimization to maximize likelihood function. Quasi-Newton method
with BFGS modification formula of Hessian is used as the numerical optimization method.

4 Model Extension

We have seen that low dimension of state vector is required in the estimation method. Low
dimension corresponds to small number of peaks of power spectrum. This might cause less of
fitness to data. To improve the disadvantage, the original model has been extended as follows.
Time invariant factors of power spectrum are introduced to the original model. They can be
represented by stationary AR model of order n, and the extended model can be written as

follows,
0, = O, +w,
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In the extended model, time constant parameters are rewritten to contain the additional
parameters ¢;(j = 1 ~ n) as follows,

2 .2 2 2
|:0' ,TI,TQ,...,Tm,Tl,T'2,...,Tm,CI,C2,...,Cn] .

They can be determined by quasi-Newton method.

5 Analysis of Seismic Wave Data

Seismic wave data observed in Hokkaido, Japan has been shown in fig. 1. The data consist
of east-west direction of vibration, and length of data is 2500 with sampling time 0.02 second.
Vibration without earthquake, primaly wave(P-wave), secondary wave(S-wave) and its decay
are contained in the data. While the data has nonstationary variance, normalization of variance
is required before applying TVPP model or TVAR model[2]. Variance normalized series of
seismic wave data is shown in fig. 2.

AIC can be used to determine which model and what order is better [1]. Values of AIC
obtained by TVPP model and TVAR model for variance normalized series are shown in tbl.
1. TVAR model has better fitness than TVPP model in terms of AIC.

Estimated result by TVPP model is as follows, frequency of time-varying peaks have been
shown in fig. 3, and time invariant factor of power spectrum has been shown in fig. 4. Time-
varying power spectrum obtained by TVAR model has been shown in fig. 6. Time-varying
peak frequencies numerically obtained from the spectrum has been shown in fig. 5.

By looking at the estimated result of time-varying peaks by TVPP model, different fre-
quencies are confirmed among vibration without earthquake, P-wave, and S-wave. Also we can
see that the peak frequency in S-wave is going to back to what of without earthquake as the
amplitude of wave going down.
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Table 1: Values of AIC for seismic wave data
n of TVPP model TVPP model TVAR model ‘
pof TVAR model | (m=1) (m=2)|(k=1) (k=2)

3532.13  4920.54 .
5389.31  4896.59 | 6231.14 6249.99
5216.65 4893.50 | 5275.58 5382.85
4877.33  4737.70 | 4845.18 4890.47
4872.92  4729.95 | 4598.60 4608.77
4811.62 4731.02 | 4628.58 4634.89
5034.67 4671.28 | 4621.63 4616.72
4766.36  4636.29 | 4626.05 4618.25
4724.06 4614.22 | 4601.88 4604.13
4724.26  4612.76 | 4600.42 4618.90
4724.99  4629.40 | 4605.10 4644.37
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Figure 1: Seismic wave data
y(®)
50
0.0)
-5.0 ‘ ‘ ‘ ‘ t
0 500 1000 1500 2000 2500

Figure 2: Variance normalized series of seismic wave data
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Figure 3: Estimated result of time-varying peak frequencies of power spectrum by TVPP

model(50%,68%,95%,and 99% points are plotted)
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Figure 4: Estimated result of time invariant power spectrum by TVPP model
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Figure 5: Estimate result of time-vaying peak frequencies of power spectrum by TVAR model
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Figure 6: Estimated result of time-varying power spectrum by TVAR model



